SPSS时间序列 应用时间序列模型
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了SPSS时间序列 应用时间序列模型相关的知识,希望对你有一定的参考价值。
SPSS时间序列:应用时间序列模型一、应用时间序列模型(分析-预测-应用模型)“应用时间序列模型”过程从外部文件加载现有的时间序列模型,
参考技术A SPSS时间序列:应用时间序列模型一、应用时间序列模型(分析-预测-应用模型)
“应用时间序列模型”过程从外部文件加载现有的时间序列模型,并将它们应用于活动数据集。使用此过程,可以在不重新建立模型的情况下获得其新数据或修订数据可用的序列的预测值。模型是使用时间序列建模器过程生成的。
1、示例。假定您是一家大型零售店的库存经理,您负责管理5,000种产品。您曾使用专家建模器创建了一些模型,用来预测每种产品在未来三个月的销售情况。您的数据仓库每个月都会使用实际销售数据进行刷新,您希望使用这些数据来生成每月更新预测值。通过?应用时间序列模型?过程,您可以使用原有模型,然后只需重新估计模型参数以说明新数据即可实现此预测。
2、统计量。拟合优度测量:平稳的R方、R方(R2)、均方根误差(RMSE)、平均绝对误差(MAE)、平均绝对误差百分比(MAPE)、最大绝对误差(MaxAE)、最大绝对误差百分比(MaxAPE)、标准化BIC准则。残差:自相关函数、偏自相关函数、Ljung-Box Q。图。跨所有模型的摘要图:平稳的R方、R方(R2)、均方根误差(RMSE)、平均绝对误差(MAE)、平均绝对误差百分比(MAPE)、最大绝对误差(MaxAE)、最大绝对误差百分比(MaxAPE)、标准化BIC准则的直方图;残差自相关和偏自相关的箱图。单个模型的结果:预测值、拟合值、观察值、置信区间的上限和下限、残差自相关和偏自相关。
二、统计量(分析-预测-应用模型-统计量)
1、比较模型的统计量。这组选项控制如何显示包含所有模型的统计量的表。每个选项分别生成单独的表。可以选择以下选项中的一个或多个:
1.1、拟合优度。固定的R方、R方、均方根误差、平均绝对误差百分比、平均绝对误差、最大绝对误差百分比、最大绝对误差以及标准化的BIC准则的摘要统计量和百分位数表。
1.2、残差自相关函数(ACF)。所有估计模型中残差的自相关摘要统计和百分位表。此表只在重新估计模型参数时可用(?模型?选项卡上的根据数据重新估计)。
1.3、残差部分自相关函数(PACF)。所有估计模型中残差的部分自相关摘要统计和百分位表。此表只在重新估计模型参数时可用(?模型?选项卡上的根据数据重新估计)。
2、个别模型的统计量。这组选项控制如何显示包含每个模型的详细信息的表。每个选项分别生成单独的表。可以选择以下选项中的一个或多个:
2.1、参数估计。显示每个模型的参数估计值的表。为指数平滑法和ARIMA模型显示不同的表。如果存在离群值,则它们的参数估计值也将在单独的表中显示。
2.2、残差自相关函数(ACF)。按每个估计模型的延迟显示残差自相关表。该表包含自相关的置信区间。此表只在重新估计模型参数时可用(?模型?选项卡上的根据数据重新估计)。
1.3、残差部分自相关函数(PACF)。按每个估计模型的延迟显示残差部分自相关表。该表包含部分自相关的置信区间。此表只在重新估计模型参数时可用(?模型?选项卡上的根据数据重新估计)。
3、显示预测值。显示每个模型的模型预测值和置信区间的表。
三、图表(分析-预测-应用模型-图表)
序列。选择(选中)此选项可获取每个模型的预测值的图。只有在重新估计模型参数时(?模型?选项卡上的根据数据重新估计),观察值、拟合值、拟合值的置信区间以及自相关才可用。可以选择在图中包含以下一项或多项:
◎观察值。相依序列的观察值。
◎预测值。预测期的模型预测值。
◎拟合值。估计期的模型预测值。
◎预测值的置信区间。预测期的置信区间。
◎拟合值的置信区间。估计期的置信区间。
残差自相关函数(ACF)。显示每个估计模型的残差自相关图。
残差部分自相关函数(PACF)。显示每个估计模型的残差部分自相关图。
四、输出过滤(分析-预测-应用模型-输出过滤)
1、最佳拟合模型。选择(选中)此选项将在输出中包含最佳拟合模型。选择拟合优度测量并指定要包含的模型数。选择此选项不妨碍同时选择最差拟合模型。如果同时选择两者,则输出将由最差拟合模型和最佳拟合模型组成。
1.1、模型的固定数量。指定为n个最佳拟合模型显示结果。如果指定的数量超过模型的总数,则显示所有模型。
1.2、占模型总数的百分比。指定为其拟合优度值在所有模型的前n个百分比范围内的模型显示结果。
2、最差拟合模型。选择(选中)此选项将在输出中包含最差拟合模型。选择拟合优度测量并指定要包含的模型数。选择此选项不妨碍同时选择最佳拟合模型。如果同时选择两者,输出将由最佳拟合模型和最差拟合模型组成。
2.1、模型的固定数量。指定为n个最差拟合模型显示结果。如果指定的数量超过模型的总数,则显示所有模型。
2.2、占模型总数的百分比。指定为其拟合优度值在所有模型的后n个百分比范围内的模型显示结果。3、拟合优度。选择用于过滤模型的拟合优度测量。缺省值为固定的R方。
114页PPT教程:SPSS在时间序列预测中的应用,觉得还不错,就分享给大家吧
预测是高阶数据分析的宏大目标,战略战术的确立和实施很大程度会依赖对未来的预测和判断。
预测也是数据分析师的终极追求之一,不掌握几门预测技术的话职业生涯就显得缺憾了。
SPSS统计软件提供了时间序列预测技术,专门用于时序数据。小兵特地精选了一份SPSS时间序列分析PPT教程,该教程一共114张P,内容丰满、讲解透彻、配有案例。觉得还不错,分享给大家自学。
扫一扫、或者长按以下二维码,进入百度文库学习该教程。万一遇到二维码失效等问题,请点击文末「阅读原文」直接阅读。
(文库贡献者:wenchenglian)
--鼓励分享转发--
以上是关于SPSS时间序列 应用时间序列模型的主要内容,如果未能解决你的问题,请参考以下文章