[LeetCode] 123. Best Time to Buy and Sell Stock III 买卖股票的最佳时间 III

Posted 轻风舞动

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[LeetCode] 123. Best Time to Buy and Sell Stock III 买卖股票的最佳时间 III相关的知识,希望对你有一定的参考价值。

Say you have an array for which the ith element is the price of a given stock on day i.

Design an algorithm to find the maximum profit. You may complete at most two transactions.

Note: You may not engage in multiple transactions at the same time (i.e., you must sell the stock before you buy again).

Example 1:

Input: [3,3,5,0,0,3,1,4]
Output: 6
Explanation: Buy on day 4 (price = 0) and sell on day 6 (price = 3), profit = 3-0 = 3.
             Then buy on day 7 (price = 1) and sell on day 8 (price = 4), profit = 4-1 = 3.

Example 2:

Input: [1,2,3,4,5]
Output: 4
Explanation: Buy on day 1 (price = 1) and sell on day 5 (price = 5), profit = 5-1 = 4.
             Note that you cannot buy on day 1, buy on day 2 and sell them later, as you are
             engaging multiple transactions at the same time. You must sell before buying again.

Example 3:

Input: [7,6,4,3,1]
Output: 0
Explanation: In this case, no transaction is done, i.e. max profit = 0.

给定一个元素代表某股票每天价格的数组,最多可以买卖股票2次,还是不能同时有多个交易,买之前要卖出,求最大利润。

两次买卖在时间跨度上不能有重叠(当然第一次的卖出时间和第二次的买入时间可以是同一天)。既然不能有重叠可以将整个序列以任意坐标i为分割点,分割成两部分:

prices[0:n-1] => prices[0:i] + prices[i:n-1],对于这个分割来说,最大收益为两段的最大收益之和。每一段的最大收益用I的解法来做。最大收益是对所有0<=i<=n-1的分割的最大收益取一个最大值。

1. 计算A[0:i]的收益最大值:用minPrice记录i左边的最低价格,用maxLeftProfit记录左侧最大收益
2. 计算A[i:n-1]的收益最大值:用maxPrices记录i右边的最高价格,用maxRightProfit记录右侧最大收益。
3. 最后这两个收益之和便是以i为分割的最大收益。将序列从左向右扫一遍可以获取dp1,从右向左扫一遍可以获取dp2。相加后取最大值即为答案。

时间复杂度O(n), 空间复杂度O(n)

Java:Divide and conquer

public class Solution {
    public int maxProfit(int[] prices) {
        // find maxProfit for {0, j}, find maxProfit for {j + 1, n - 1}
        // find max for {max{0, j}, max{j + 1, n - 1}}

        if (prices == null || prices.length == 0) {
            return 0;
        }

        int maximumProfit = 0;
        int n = prices.length;

        ArrayList<Profit> preMaxProfit = new ArrayList<Profit>(n);
        ArrayList<Profit> postMaxProfit = new ArrayList<Profit>(n);
        for (int i = 0; i < n; i++) {
            preMaxProfit.add(maxProfitHelper(prices, 0, i));
            postMaxProfit.add(maxProfitHelper(prices, i + 1, n - 1));
        }
        for (int i = 0; i < n; i++) {
            int profit = preMaxProfit.get(i).maxProfit + postMaxProfit.get(i).maxProfit;
            maximumProfit = Math.max(profit, maximumProfit);
        }
        return maximumProfit;
    }

    private Profit maxProfitHelper(int[] prices, int startIndex, int endIndex) {
        int minPrice = Integer.MAX_VALUE;
        int maxProfit = 0;
        for (int i = startIndex; i <= endIndex; i++) {
            if (prices[i] < minPrice) {
                minPrice = prices[i];
            }
            if (prices[i] - minPrice > maxProfit) {
                maxProfit = prices[i] - minPrice;
            }
        }
        return new Profit(maxProfit, minPrice);
    }

    public static void main(String[] args) {
        int[] prices = new int[]{4,4,6,1,1,4,2,5};
        Solution s = new Solution();
        System.out.println(s.maxProfit(prices));
    }
};

class Profit {
    int maxProfit, minPrice;
    Profit(int maxProfit, int minPrice) {
        this.maxProfit = maxProfit;
        this.minPrice = minPrice;
    }
}

Java:DP

public class Solution {
    public int maxProfit(int[] prices) {
        if (prices == null || prices.length <= 1) {
            return 0;
        }

        int[] left = new int[prices.length];
        int[] right = new int[prices.length];

        // DP from left to right;
        left[0] = 0;
        int min = prices[0];
        for (int i = 1; i < prices.length; i++) {
            min = Math.min(prices[i], min);
            left[i] = Math.max(left[i - 1], prices[i] - min);
        }

        //DP from right to left;
        right[prices.length - 1] = 0;
        int max = prices[prices.length - 1];
        for (int i = prices.length - 2; i >= 0; i--) {
            max = Math.max(prices[i], max);
            right[i] = Math.max(right[i + 1], max - prices[i]);
        }

        int profit = 0;
        for (int i = 0; i < prices.length; i++){
            profit = Math.max(left[i] + right[i], profit);  
        }

        return profit;
    }
}

Python:T:O(n), S: O(n)

class Solution3:
    def maxProfit(self, prices):
        min_price, max_profit_from_left, max_profits_from_left = float("inf"), 0, []
        for price in prices:
            min_price = min(min_price, price)
            max_profit_from_left = max(max_profit_from_left, price - min_price)
            max_profits_from_left.append(max_profit_from_left)
            
        max_price, max_profit_from_right, max_profits_from_right = 0, 0, []
        for i in reversed(range(len(prices))):
            max_price = max(max_price, prices[i])
            max_profit_from_right = max(max_profit_from_right, max_price - prices[i])
            max_profits_from_right.insert(0, max_profit_from_right)
            
        max_profit = 0
        for i in range(len(prices)):
            max_profit = max(max_profit, max_profits_from_left[i] + max_profits_from_right[i])
        
        return max_profit

Python: 

class Solution:
    def maxProfit(self, prices):
        hold1, hold2 = float("-inf"), float("-inf")
        release1, release2 = 0, 0
        for i in prices:
            release2 = max(release2, hold2 + i)
            hold2    = max(hold2,    release1 - i)
            release1 = max(release1, hold1 + i)
            hold1    = max(hold1,    -i);
        return release2  

C++:DP

class Solution {
public:
    int maxProfit(vector<int> &prices) {
        if(prices.empty()) return 0;
        int n = prices.size();
        vector<int> leftProfit(n,0);
        
        int maxLeftProfit = 0, minPrice = prices[0];
        for(int i=1; i<n; i++) {
            if(prices[i]<minPrice)
                minPrice = prices[i];
            else
                maxLeftProfit = max(maxLeftProfit, prices[i]-minPrice);
            leftProfit[i] = maxLeftProfit;
        }
        
        int ret = leftProfit[n-1];
        int maxRightProfit = 0, maxPrice = prices[n-1];
        for(int i=n-2; i>=0; i--) {
            if(prices[i]>maxPrice)
                maxPrice = prices[i];
            else
                maxRightProfit = max(maxRightProfit, maxPrice-prices[i]);
            ret = max(ret, maxRightProfit + leftProfit[i]);
        }
        
        return ret;
    }
};

  

类似题目:

[LeetCode] 121. Best Time to Buy and Sell Stock 买卖股票的最佳时间

[LeetCode] 122. Best Time to Buy and Sell Stock II 买卖股票的最佳时间 II

[LeetCode] 188. Best Time to Buy and Sell Stock IV 买卖股票的最佳时间 IV

[LeetCode] 309. Best Time to Buy and Sell Stock with Cooldown 买卖股票的最佳时间有冷却期

All LeetCode Questions List 题目汇总

  

 

以上是关于[LeetCode] 123. Best Time to Buy and Sell Stock III 买卖股票的最佳时间 III的主要内容,如果未能解决你的问题,请参考以下文章

123. Best Time to Buy and Sell Stock leetcode解题笔记

[leetcode]123. Best Time to Buy and Sell Stock III

[leetcode-123-Best Time to Buy and Sell Stock III]

LeetCode123 Best Time to Buy and Sell Stock III

LeetCode123 Best Time to Buy and Sell Stock III

leetcode 123. Best Time to Buy and Sell Stock III ----- java