Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”
_______3______ / ___5__ ___1__ / \ / 6 _2 0 8 / 7 4
For example, the lowest common ancestor (LCA) of nodes 5
and 1
is 3
. Another example is LCA of nodes 5
and 4
is 5
, since a node can be a descendant of itself according to the LCA definition.
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ class Solution { public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) { if(root == null){ return null; } if(root == p || root == q){ return root; } TreeNode left = lowestCommonAncestor(root.left, p, q); TreeNode right = lowestCommonAncestor(root.right, p, q); if(left != null && right != null){ return root; } if(left != null){ return left; } if(right != null){ return right; } return null; } }
这道题在235基础上取消了BST的限制,所以我们无法通过比较值的大小来进行剪枝,那么这道题的思路就是用一般的recursion来做。
明确一点,如果某个顶点是我们所要的结果,则有且只有一种情况满足条件:该node左树,右树,分别有p,q之一。(*)
某个node左树(或右树)有p 和 q,则这个node一定不是最小公共node。
基于此,我们的recursion就写出来啦
1.base case: null
2. subproblem: 左树,右树
2.recursion rule: 如果看到了p,q,返回。否则调用subproblem。
如果左右都不是null,说明左右各有一p,q,满足(*),返回当前root
如果左不为空,返回左
如果右不为空,返回右