Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BST.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”
_______6______ / ___2__ ___8__ / \ / 0 _4 7 9 / 3 5
For example, the lowest common ancestor (LCA) of nodes 2
and 8
is 6
. Another example is LCA of nodes 2
and 4
is 2
, since a node can be a descendant of itself according to the LCA definition.
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ class Solution { public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) { if(root == null){ return null; } if(p == null && q != null){ return q; } if(p != null && q == null){ return p; } if(root.val < p.val && root.val < q.val){ return lowestCommonAncestor(root.right, p, q); }else if(root.val > p.val && root.val > q.val){ return lowestCommonAncestor(root.left, p, q); }else{ return root; } } }
这道题首先要明确题目背景---二叉搜索树。也正是因为是二叉搜索树,所以我们可以利用二叉搜索树从小到大排好序的特性来做。
对于一个root和另外两个Node来说,它们的值会有以下几种情况:
1. root.val < p.val && root.val < q.val 此时,两个node的值都比root大,说明这两个值在root右边的subtree里,且他们的最小公共顶点不可能是当前root
2. root.val > p.val && root.val > q.val 此时,两个node的值都比root小,说明这两个值在root左边的subtree里,且他们的最小公共顶点不可能是当前root
3. else,此时 root的值在p,q之间(或等于p,q中的某一个),此时,当前root即为公共顶点
再加上一些corner case,完成。