java中锁的四种状态
Posted m0_69523172
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了java中锁的四种状态相关的知识,希望对你有一定的参考价值。
-
四种状态
-
锁状态转换过程
-
锁的优缺点
-
参考文章
-
小结
[](()前言
============================================================
在多线程并发编程中Synchronized一直是元老级角色,很多人都会称它为重量级锁,但是随着 Java SE1.6 对 Synchronized 进行了各种优化之后,有些情况下它并不那么重了,本文详细介绍了 Java SE1.6 中为了减少获得锁和释放锁带来的性能消耗而引入的偏向锁和轻量级锁,以及锁的存储结构和升级过程。
[](()叙述
============================================================
首先我们以一张思维导图大概的了解一下锁状态,接下来将进行具体的阐述。
[](()Synchronized
synchronized,所谓的重量级锁。Java中每一个对象都可以作为一个锁,表现为:
-
对于普通方法的同步,锁是当前实例对象。
-
对于静态方法的同步,锁是当前类的Class对象。
-
对于同步方法块,锁是Synchronized括号里配置的对象。
JVM基于进入和退出Monitor对象来实现方法同步和代码同步。代码块同步是使用monitorenter和monitorexit指令实现的,monitorenter指令是在编译后插入到同步代码块开始的位置,monitorexit是插在方法结束处和异常处。
方法级的同步是隐式的。同步方法的常量池中会有一个ACC_SYNCHRONIZED标志。当某个线程要访问某个方法的时候,会检查是否有ACC_SYNCHRONIZED,如果有设置,则需要先获得监视器锁,然后开始执行方法,方法执行之后再释放监视器锁。这时如果其他线程来请求执行方法,会因为无法获得监视器锁而被阻断住。值得注意的是,如果在方法执行过程中,发生了异常,并且方法内部并没有处理该异常,那么在异常被抛到方法外面之前监视器锁会被自动释放。
[](()volatile
volatile是轻量级的synchronized,它在多处理器开发中保证了共享变量的可见性。对一个volatile变量的读,总是能看到任意线程对这个volatile变量最后的写入,对单个volatile变量的读写具有原子性。就是说,线程对volatile变量本地内存的写入会被更新到主内存,其他线程对同个volatile的读取,会先将本地的设为无效,必须从主内存中读取。
[](()锁的状态
[](()锁是存在哪里的呢?
锁存在Java的对象头中的Mark Work。Mark Work默认不仅存放着锁标志位,还存放对象hashCode等信息。运行时,会根据锁的状态,修改Mark Work的存储内容。如果对象是数组类型,则虚拟机用3个字宽存储对象头,如果对象是非数组类型,则用2字宽存储对象头。在32位虚拟机中,一字宽等于四字节,即32bit。
-
字宽(Word): 内存大小的单位概念, 对于 32 位处理器 1 Word = 4 Bytes, 64 位处理器 1 Word = 8 Bytes
-
每一个 Java 对象都至少占用 2 个字宽的内存(数组类型占用3个字宽)。
-
第一个字宽也被称为对象头Mark Word。 对象头包含了多种不同的信息, 其中就包含对象锁相关的信息。
-
第二个字宽是指向定义该对象类信息(class metadata)的指针
[](()四种状态
锁有四种状态:无锁状态、偏向锁、轻量级锁、重量级锁
随着锁的竞争,锁的状态会从偏向锁到轻量级锁,再到重量级锁。而且锁的状态只有升级,没有降级。也就是只有偏向锁->轻量级锁->重量级锁,没有重量级锁->轻量级锁->偏向锁。
锁状态的改变是根据竞争激烈程度进行的,在几乎无竞争的条件下,会使用偏向锁,在轻度竞争的条件下,会由偏向锁升级为轻量级锁, 在重度竞争的情况下,会升级到重量级锁。
下图展现了一个对象在创建(allocate)后,根据偏斜锁机制是否打开,对象 MarkWord 状态以不同方式转换的过程。
| 锁名称 | 描述 | 应用场景 |
| — | — | — |
| 偏向锁 | 线程在大多数情况下并不存在竞争条件,使用同步会消耗性能,而偏向锁是对锁的优化,可以消除同步,提升性能。当一个线程获得锁,会将对象头的锁标志位设为01,进入偏向模式.偏向锁可以在让一个线程一直持有锁,在其他线程需要竞争锁的时候,再释放锁。 | 只有一个线程进入临界区 |
| 轻量级锁 | 当线程A获得偏向锁后,线程B进入竞争状态,需要获得线程A持有的锁,那么线程A撤销偏向锁,进入无锁状态。线程A和线程B交替进入临界区,偏向锁无法满足,膨胀到轻量级锁,锁标志位设为00。 | 多个线程交替进入临界区 |
| 重量级锁 | 当多线程交替进入临界区,轻量级锁hold得住。但如果多个线程同时进入临界区,hold不住了,膨胀到重量级锁 | 多个线程同时进入临界区 |
[](()锁状态转换过程
无锁 -> 偏向锁
从上图可以看到 , 偏向锁的获取方式是将对象头的 MarkWord 部分中, 标记上线程ID, 以表示哪一个线程获得了偏向锁。 具体的赋值逻辑如下:
- 首先读取目标对象的 MarkWord, 判断是否处于可偏向的状态
下面是 Open Jdk/ JDK 8 源码 中检测一个对象是否处于可偏向状态的源码
// Indicates that the mark has the bias bit set but that it has not
// yet been biased toward a particular thread
bool is_biased_anonymously() const
return (has_bias_pattern() && (biased_locker() == NULL));
-
has_bias_pattern() 返回 true 时代表 markword 的可偏向标志 bit 位为 1 ,且对象头末尾标志为 01。
-
biased_locker() == NULL 返回 true 时代表对象 Mark Word 中 bit field 域存储的 Thread Id 为空。
-
如果为可偏向状态, 则尝试用 CAS 操作, 将自己的线程 ID 写入MarkWord
-
如果 CAS 操作成功(状态转变为下图), 则认为已经获取到该对象的偏向锁, 执行同步块代码 。 注意, age 后面的标志位中的值并没有变化, 这点之后会用到
-
补充: 一个线程在执行完同步代码块以后, 并不会尝试将 MarkWord 中的 thread ID 赋回原值 。这样做的好处是: 如果该线程需要再次对这个对象加锁,而这个对象之前一直没有被其他线程尝试获取过锁,依旧停留在可偏向的状态下, 即可在不修改对象头的情况下, 直接认为偏向成功。
-
补充如果 CAS 操作失败, 则说明, 有另外一个线程 Thread B 抢先获取了偏向锁。 这种状态说明该对象的竞争比较激烈, 此时需要撤销 Thread B 获得的偏向锁,将 Thread B 持有的锁升级为轻量级锁。 该操作需要等待全局安全点 JVM safepoint ( 此时间点, 没有线程在执行字节码)
-
如果是已偏向状态, 则检测 MarkWord 中存储的 thread ID 是否等于当前 thread ID
-
如果相等, 则证明本线程已经获取到偏向锁,可以直接继续执行同步代码块
-
如果不等, 则证明该对象目前偏向于其他线程, 需要撤销偏向锁
从上面的偏向锁机制描述中,可以注意到
- 偏向锁的 撤销(revoke) 是一个很特殊的操作, 为了执行撤销操作, 需要等待全局安全点(Safe Point), 此时间点所有的工作线程都停止了字节码的执行
偏向锁的撤销(Revoke)
如上文提到的, 偏向锁的撤销(Revoke) 操作并不是将对象恢复到无锁可偏向的状态, 而是在偏向锁的获取过程中, 发现了竞争时, 直接将一个被偏向的对象“升级到” 被加了轻量级锁的状态。 这个操作的具体完成方式如下:
java中锁的应用
锁作为并发共享数据,保证一致性的工具,在JAVA平台有多种实现(如 synchronized(重量级) 和 ReentrantLock(轻量级)等等 ) 。这些已经写好提供的锁为我们开发提供了便利。
1.重入锁
重入锁,也叫做递归锁,指的是同一线程 外层函数获得锁之后 ,内层递归函数仍然有获取该锁的代码,但不受影响。synchronized(重量级) 和 ReentrantLock(轻量级)都属于可重入锁。
synchronized 和 Lock的区别
synchronize是重量级锁,使用结束之后会自动释放锁。用于方法和静态代码块。
lock是轻量级锁,需要手动加锁和手动释放锁。JDK1.5之后出来的并发包。灵活性高。
2.读写锁
相比Java中的锁(Locks in Java)里Lock实现,读写锁更复杂一些。假设你的程序中涉及到对一些共享资源的读和写操作,且写操作没有读操作那么频繁。在没有写操作的时候,两个线程同时读一个资源没有任何问题,所以应该允许多个线程能在同时读取共享资源。但是如果有一个线程想去写这些共享资源,就不应该再有其它线程对该资源进行读或写(译者注:也就是说:读-读能共存,读-写不能共存,写-写不能共存)。这就需要一个读/写锁来解决这个问题。Java5在java.util.concurrent包中已经包含了读写锁。尽管如此,我们还是应该了解其实现背后的原理。
读锁:获取值的信息。
写锁:对值做操作。
3.悲观锁和乐观锁
乐观锁:
总是认为不会产生并发问题,每次去取数据的时候总认为不会有其他线程对数据进行修改,因此不会上锁,但是在更新时会判断其他线程在这之前有没有对数据进行修改,一般会使用版本号机制或CAS操作实现。
version方式:一般是在数据表中加上一个数据版本号version字段,表示数据被修改的次数,当数据被修改时,version值会加一。当线程A要更新数据值时,在读取数据的同时也会读取version值,在提交更新时,若刚才读取到的version值为当前数据库中的version值相等时才更新,否则重试更新操作,直到更新成功。
核心SQL语句
update table set x=x+1, version=version+1 where id=#id and version=#version;
CAS操作方式:即compare and swap 或者 compare and set,涉及到三个操作数,数据所在的内存值,预期值,新值。当需要更新时,判断当前内存值与之前取到的值是否相等,若相等,则用新值更新,若失败则重试,一般情况下是一个自旋操作,即不断的重试。
乐观锁本质没有锁,效率比较高、无阻塞、无等待、重试。
悲观锁:
总是假设最坏的情况,每次取数据时都认为其他线程会修改,所以都会加锁(读锁、写锁、行锁等),当其他线程想要访问数据时,都需要阻塞挂起。可以依靠数据库实现,如行锁、读锁和写锁等,都是在操作之前加锁,在Java中,synchronized的思想也是悲观锁。
悲观锁特征:重量级锁、对每一个请求都会加锁、会进行阻塞。
原子类
java.util.concurrent.atomic包:原子类的小工具包,支持在单个变量上解除锁的线程安全编程。
原子变量类相当于一种泛化的 volatile 变量,能够支持原子的和有条件的读-改-写操作。AtomicInteger 表示一个int类型的值,并提供了 get 和 set 方法,这些 Volatile 类型的int变量在读取和写入上有着相同的内存语义。它还提供了一个原子的 compareAndSet 方法(如果该方法成功执行,那么将实现与读取/写入一个 volatile 变量相同的内存效果),以及原子的添加、递增和递减等方法。AtomicInteger 表面上非常像一个扩展的 Counter 类,但在发生竞争的情况下能提供更高的可伸缩性,因为它直接利用了硬件对并发的支持。
Java中的原子操作类大致可以分为4类:原子更新基本类型、原子更新数组类型、原子更新引用类型、原子更新属性类型。这些原子类中都是用了无锁的概念,有的地方直接使用CAS操作的线程安全的类型。常用的原子类 AtomicBoolean、AtomicInteger、AtomicLong、AtomicReference。
4.CAS无锁机制
什么是CAS
CAS:Compare and Swap,即比较再交换。
jdk5增加了并发包java.util.concurrent.*,其下面的类使用CAS算法实现了区别于synchronouse同步锁的一种乐观锁。JDK 5之前Java语言是靠synchronized关键字保证同步的,这是一种独占锁,也是是悲观锁。
CAS算法理解
(1)与锁相比,使用比较交换(下文简称CAS)会使程序看起来更加复杂一些。但由于其非阻塞性,它对死锁问题天生免疫,并且,线程间的相互影响也远远比基于锁的方式要小。更为重要的是,使用无锁的方式完全没有锁竞争带来的系统开销,也没有线程间频繁调度带来的开销,因此,它要比基于锁的方式拥有更优越的性能。
(2)无锁的好处:
第一,在高并发的情况下,它比有锁的程序拥有更好的性能;
第二,它天生就是死锁免疫的。
就凭借这两个优势,就值得我们冒险尝试使用无锁的并发。
(3)CAS算法的过程是这样:它包含三个参数CAS(V,E,N): V表示要更新的变量(主内存),E表示预期值(本地内存),N表示新值。当V值等于E值时,才会将V的值设为N,如果V值和E值不同,则说明已经有其他线程做了更新,则当前线程什么都不做。最后,CAS返回当前V的真实值。如果不一致的话,会刷新值到主内存中。
(4)CAS操作是抱着乐观的态度进行的,它总是认为自己可以成功完成操作。当多个线程同时使用CAS操作一个变量时,只有一个会胜出,并成功更新,其余均会失败。失败的线程不会被挂起,仅是被告知失败,并且允许再次尝试,当然也允许失败的线程放弃操作。基于这样的原理,CAS操作即使没有锁,也可以发现其他线程对当前线程的干扰,并进行恰当的处理。
(5)简单地说,CAS需要你额外给出一个期望值,也就是你认为这个变量现在应该是什么样子的。如果变量不是你想象的那样,那说明它已经被别人修改过了。你就重新读取,再次尝试修改就好了。
(6)在硬件层面,大部分的现代处理器都已经支持原子化的CAS指令。在JDK 5.0以后,虚拟机便可以使用这个指令来实现并发操作和并发数据结构,并且,这种操作在虚拟机中可以说是无处不在。
CAS(乐观锁算法)的基本假设前提
CAS比较与交换的伪代码可以表示为:
do
备份旧数据;
基于旧数据构造新数据;
while(!CAS( 内存地址,备份的旧数据,新数据 ))
(上图的解释:CPU去更新一个值,但如果想改的值不再是原来的值,操作就失败,因为很明显,有其它操作先改变了这个值。)
就是指当两者进行比较时,如果相等,则证明共享数据没有被修改,替换成新值,然后继续往下运行;如果不相等,说明共享数据已经被修改,放弃已经所做的操作,然后重新执行刚才的操作。容易看出 CAS 操作是基于共享数据不会被修改的假设,采用了类似于数据库的 commit-retry 的模式。当同步冲突出现的机会很少时,这种假设能带来较大的性能提升。
CAS缺点
CAS存在一个很明显的问题,即ABA问题。
问题:如果变量V初次读取的时候是A,并且在准备赋值的时候检查到它仍然是A,那能说明它的值没有被其他线程修改过了吗?
如果在这段期间曾经被改成B,然后又改回A,那CAS操作就会误认为它从来没有被修改过。针对这种情况,java并发包中提供了一个带有标记的原子引用类AtomicStampedReference,它可以通过控制变量值的版本来保证CAS的正确性。
5.java内存模型
本地内存(工作内存):存放共享内存的副本,如果本地共享内存修改之后就会刷新到主内存(共享内存)中。不同的本地内存它们之间的共享内存副本相互不可见,如果二个本地内存都做了+1 操作,都会刷新结果到主内存中,但是主内存结果最后只进行了一次+1操作,这时候就产生了问题,因为二个本地内存中都做了+1操作。
Synchronize既能保证线程安全也能保证原子性,volatile 可以保证可见性,但是不能保证原子性问题(线程安全)。
6.自旋锁与互斥锁的区别
互斥锁:会进行等待、阻塞、悲观锁,线程会从sleep(加锁)------------>running(解锁 ),过程中有上下文的切换,cpu的抢占,信号的发送等开销。
自旋锁:乐观锁,线程一直是running(加锁-------->解锁),死循环检测锁的标志位,机制不重复。
7.公平锁与非公平锁的区别
公平锁和非公平锁的队列都基于锁内部维护的一个双向链表,表节点Node的值就是每一个请求当前锁的线程。公平锁则在于每次都是依此从到到尾的执行。
锁的表现方式:表节点Node和状态state的volatile关键字。
公平锁:先到先得,顺序执行。
非公平锁:在等待锁的过程中,如果有任意新的线程妄图获取锁,都是有很大的机率直接获取到锁的。
以上是关于java中锁的四种状态的主要内容,如果未能解决你的问题,请参考以下文章