Linux进程间通信(互斥锁、条件变量、读写锁、文件锁、信号灯)
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Linux进程间通信(互斥锁、条件变量、读写锁、文件锁、信号灯)相关的知识,希望对你有一定的参考价值。
参考技术A 为了能够有效的控制多个进程之间的沟通过程,保证沟通过程的有序和和谐,OS必须提供一定的同步机制保证进程之间不会自说自话而是有效的协同工作。比如在 共享内存的通信方式中,两个或者多个进程都要对共享的内存进行数据写入,那么怎么才能保证一个进程在写入的过程中不被其它的进程打断,保证数据的完整性 呢?又怎么保证读取进程在读取数据的过程中数据不会变动,保证读取出的数据是完整有效的呢?常用的同步方式有: 互斥锁、条件变量、读写锁、记录锁(文件锁)和信号灯.
互斥锁:
顾名思义,锁是用来锁住某种东西的,锁住之后只有有钥匙的人才能对锁住的东西拥有控制权(把锁砸了,把东西偷走的小偷不在我们的讨论范围了)。所谓互斥, 从字面上理解就是互相排斥。因此互斥锁从字面上理解就是一点进程拥有了这个锁,它将排斥其它所有的进程访问被锁住的东西,其它的进程如果需要锁就只能等待,等待拥有锁的进程把锁打开后才能继续运行。 在实现中,锁并不是与某个具体的变量进行关联,它本身是一个独立的对象。进(线)程在有需要的时候获得此对象,用完不需要时就释放掉。
互斥锁的主要特点是互斥锁的释放必须由上锁的进(线)程释放,如果拥有锁的进(线)程不释放,那么其它的进(线)程永远也没有机会获得所需要的互斥锁。
互斥锁主要用于线程之间的同步。
条件变量:
上文中提到,对于互斥锁而言,如果拥有锁的进(线)程不释放锁,其它进(线)程永远没机会获得锁,也就永远没有机会继续执行后续的逻辑。在实际环境下,一 个线程A需要改变一个共享变量X的值,为了保证在修改的过程中X不会被其它的线程修改,线程A必须首先获得对X的锁。现在假如A已经获得锁了,由于业务逻 辑的需要,只有当X的值小于0时,线程A才能执行后续的逻辑,于是线程A必须把互斥锁释放掉,然后继续“忙等”。如下面的伪代码所示:
1.// get x lock
2.while(x
多线程之线程同步(互斥锁信号量条件变量和读写锁)
前言
多线程编程的时候经常会发生公共资源被抢夺而造成问题。
通常将“多个线程同时访问某一公共资源”的现象称为“线程间产生了资源竞争”或者“线程间抢夺公共资源”,线程间竞争资源往往会导致程序的运行结果出现异常,感到匪夷所思,严重时还会导致程序运行崩溃。
幸运地是,Linux 提供了很多种解决方案,确定各个线程可以同步访问进程提供的公共资源(简称“线程同步”)。所谓线程同步,简单地理解就是:当一个线程访问某公共资源时,其它线程不得访问该资源,它们只能等待此线程访问完成后,再逐个访问该资源。
Linux线程同步的解决方案
Linux 环境中,实现线程同步的常用方法有 4 种,分别称为互斥锁、信号量、条件变量和读写锁。
互斥锁(Mutex)又称互斥量或者互斥体,是最简单也最有效地一种线程同步机制。互斥锁的用法和实际生活中的锁非常类似,当一个线程访问公共资源时,会及时地“锁上”该资源,阻止其它线程访问;访问结束后再进行“解锁”操作,将该资源让给其它线程访问。
信号量又称“信号灯”,主要用于控制同时访问公共资源的线程数量,当线程数量控制在 ≤1 时,该信号量又称二元信号量,功能和互斥锁非常类似;当线程数量控制在 N(≥2)个时,该信号量又称多元信号量,指的是同一时刻最多只能有 N 个线程访问该资源。
条件变量的功能类似于实际生活中的门,门有“打开”和“关闭”两种状态,分别对应条件变量的“成立”状态和“不成立”状态。当条件变量“
以上是关于Linux进程间通信(互斥锁、条件变量、读写锁、文件锁、信号灯)的主要内容,如果未能解决你的问题,请参考以下文章