linux驱动开发 - 01_字符设备驱动开发

Posted kaka的卡

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了linux驱动开发 - 01_字符设备驱动开发相关的知识,希望对你有一定的参考价值。

文章目录

字符设备驱动开发

1. 字符设备驱动简介

​ 字符设备是 Linux 驱动中最基本的一类设备驱动,字符设备就是一个一个字节,按照字节流进行读写操作的设备,读写数据是分先后顺序的。比如我们最常见的点灯、按键、 IIC、 SPI,LCD 等等都是字符设备,这些设备的驱动就叫做字符设备驱动。

在 Linux 中一切皆为文件,驱动加载成功以后会在“/dev”目录下生成一个相应的文件,应用程序通过对这个名为“/dev/xxx” (xxx 是具体的驱动文件名字)的文件进行相应的操作即可实现对硬件的操作。

​ linux 下的应用程序是如何调用驱动程序的? **Linux 应用程序对驱动程序的调用如图 **

​ 应用程序运行在用户空间,而 Linux 驱动属于内核的一部分,因此驱动运行于内核空间。当我们在用户空间想要实现对内核的操作,比如使用 open 函数打开/dev/led 这个驱动,因为用户空间不能直接对内核进行操作,因此必须使用一个叫做“系统调用”的方法来实现从用户空间“陷入” 到内核空间,这样才能实现对底层驱动的操作。

​ 因此必须使用一个叫做“系统调用”的方法来实现从用户空间“陷入” 到内核空间,这样才能实现对底层驱动的操作。 open、 close、 write 和 read 等这些函数是由 C 库提供的,在 Linux 系统中,系统调用作为 C 库的一部分。当我们调用 open 函数的时候流程如图

​ 应用程序使用到的函数在具体驱动程序中都有与之对应的函数,比如应用程序中调用了 open 这个函数,那么在驱动程序中也得有一个名为 open 的函数。每一个系统调用,在驱动中都有与之对应的一个驱动函数,在 Linux 内核文件 include/linux/fs.h 中有个叫做 file_operations 的结构体,此结构体就是Linux 内核驱动操作函数集合,内容如下所示:

								示例代码 file_operations 结构体
1588 struct file_operations 
1589 struct module *owner;
1590 loff_t (*llseek) (struct file *, loff_t, int);
1591 ssize_t (*read) (struct file *, char __user *, size_t, loff_t*);
1592 ssize_t (*write) (struct file *, const char __user *, size_t,loff_t *);
1593 ssize_t (*read_iter) (struct kiocb *, struct iov_iter *);
1594 ssize_t (*write_iter) (struct kiocb *, struct iov_iter *);
1595 int (*iterate) (struct file *, struct dir_context *);
1596 unsigned int (*poll) (struct file *, struct poll_table_struct*);
1597 long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long);
1598 long (*compat_ioctl) (struct file *, unsigned int, unsigned long);
1599 int (*mmap) (struct file *, struct vm_area_struct *);
1600 int (*mremap)(struct file *, struct vm_area_struct *);
1601 int (*open) (struct inode *, struct file *);
1602 int (*flush) (struct file *, fl_owner_t id);
1603 int (*release) (struct inode *, struct file *);
1604 int (*fsync) (struct file *, loff_t, loff_t, int datasync);
1605 int (*aio_fsync) (struct kiocb *, int datasync);
1606 int (*fasync) (int, struct file *, int);
1607 int (*lock) (struct file *, int, struct file_lock *);
1608 ssize_t (*sendpage) (struct file *, struct page *, int, size_t,loff_t *, int);
1609 unsigned long (*get_unmapped_area)(struct file *, unsigned long,unsigned long, unsigned long, unsigned long);
1610 int (*check_flags)(int);
1611 int (*flock) (struct file *, int, struct file_lock *);
1612 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,loff_t *, size_t, unsigned int);
1613 ssize_t (*splice_read)(struct file *, loff_t *, struct pipe_inode_info *, size_t, unsigned int);
1614 int (*setlease)(struct file *, long, struct file_lock **, void**);
1615 long (*fallocate)(struct file *file, int mode, loff_t offset,
1616 loff_t len);
1617 void (*show_fdinfo)(struct seq_file *m, struct file *f);
1618 #ifndef CONFIG_MMU
1619 unsigned (*mmap_capabilities)(struct file *);
1620 #endif
1621 ;

简单介绍一下 file_operation 结构体中比较重要的、常用的函数:
第 1589 行, owner 拥有该结构体的模块的指针,一般设置为 THIS_MODULE。
第 1590 行, llseek 函数用于修改文件当前的读写位置。
第 1591 行, read 函数用于读取设备文件。
第 1592 行, write 函数用于向设备文件写入(发送)数据。
第 1596 行, poll 是个轮询函数,用于查询设备是否可以进行非阻塞的读写。
第 1597 行, unlocked_ioctl 函数提供对于设备的控制功能,与应用程序中的 ioctl 函数对应。
第 1598 行, compat_ioctl 函数与 unlocked_ioctl 函数功能一样,区别在于在 64 位系统上,32 位的应用程序调用将会使用此函数。在 32 位的系统上运行 32 位的应用程序调用的是unlocked_ioctl。
第 1599 行, mmap 函数用于将设备的内存映射到进程空间中(也就是用户空间),一般帧缓冲设备会使用此函数,比如 LCD 驱动的显存,将帧缓冲(LCD 显存)映射到用户空间中以后应用程序就可以直接操作显存了,这样就不用在用户空间和内核空间之间来回复制。
第 1601 行, open 函数用于打开设备文件。
第 1603 行, release 函数用于释放(关闭)设备文件,与应用程序中的 close 函数对应。
第 1604 行, fasync 函数用于刷新待处理的数据,用于将缓冲区中的数据刷新到磁盘中。
第 1605 行, aio_fsync 函数与 fasync 函数的功能类似,只是 aio_fsync 是异步刷新待处理的数据。

​ 。我们在字符设备驱动开发中最主要的工作就是实现上面这些函数,不一定全部都要实现,但是像 open、 release、 write、 read 等都是需要实现的,当然了,具体需要实现哪些函数还是要看具体的驱动要求。

2 字符设备驱动开发步骤

2.1 驱动模块的加载和卸载

​ Linux 驱动有两种运行方式,第一种就是将驱动编译进 Linux 内核中,这样当 Linux 内核启动的时候就会自动运行驱动程序。第二种就是将驱动编译成模块(Linux 下模块扩展名为.ko),在Linux 内核启动以后使用“insmod”命令加载驱动模块。

​ 在调试驱动的时候一般都选择将其编译为模块, 这样我们修改驱动以后只需要编译一下驱动代码即可,不需要编译整个 Linux 代码。

模块有加载和卸载两种操作,我们在编写驱动的时候需要注册这两种操作函数,模块的加载和卸载注册函数如下

module_init(xxx_init); //注册模块加载函数
module_exit(xxx_exit); //注册模块卸载函数

module_init 函数用来向 Linux 内核注册一个模块加载函数,参数 xxx_init 就是需要注册的具体函数,当使用“insmod”命令加载驱动的时候, xxx_init 这个函数就会被调用module_exit()函数用来向 Linux 内核注册一个模块卸载函数,参数 xxx_exit 就是需要注册的具体函数,当使用“rmmod”命令卸载具体驱动的时候 xxx_exit 函数就会被调用。字符设备驱动模块加载和卸载模板如下所示:

									字符设备驱动模块加载和卸载函数模板
1 /* 驱动入口函数 */
2 static int __init xxx_init(void)
3 
4 /* 入口函数具体内容 */
5 return 0;
6 
7 
8 /* 驱动出口函数 */
9 static void __exit xxx_exit(void)
10 
11 /* 出口函数具体内容 */
12 
13
14 /* 将上面两个函数指定为驱动的入口和出口函数 */
15 module_init(xxx_init);
16 module_exit(xxx_exit);

​ 驱动编译完成以后扩展名为.ko,有两种命令可以加载驱动模块: insmod和modprobe, insmod是最简单的模块加载命令,此命令用于加载指定的.ko 模块,比如加载 drv.ko 这个驱动模块,命令如下:

insmod drv.ko

insmod 命令不能解决模块的依赖关系,比如 drv.ko 依赖 first.ko 这个模块,就必须先使用insmod 命令加载 first.ko 这个模块,然后再加载 drv.ko 这个模块。但是 modprobe 就不会存在这个问题, modprobe 会分析模块的依赖关系,然后会将所有的依赖模块都加载到内核中,因此modprobe 命令相比 insmod 要智能一些

modprobe 命令主要智能在提供了模块的依赖性分析、错误检查、错误报告等功能推荐使用 modprobe 命令来加载驱动modprobe 命令默认会去/lib/modules/目录中查找模块,比如本书使用的 Linux kernel 的版本号为 4.1.15,因此 modprobe 命令默认会到/lib/modules/4.1.15 这个目录中查找相应的驱动模块,一般自己制作的根文件系统中是不会有这个目录的,所以需要自己手动创建。驱动模块的卸载使用命令“rmmod”即可,比如要卸载 drv.ko,使用如下命令即可:

rmmod drv.ko

也可以使用“modprobe -r”命令卸载驱动,比如要卸载 drv.ko,命令如下

modprobe -r drv.ko

​ 使用 modprobe 命令可以卸载掉驱动模块所依赖的其他模块,前提是这些依赖模块已经没有被其他模块所使用,否则就不能使用 modprobe 来卸载驱动模块。所以对于模块的卸载,还是推荐使用 rmmod 命令

2.2 字符设备注册与注销

字符设备的注册和注销函数原型如下所示:

static inline int register_chrdev(unsigned int major, const char *name,const struct file_operations *fops)
static inline void unregister_chrdev(unsigned int major, const char *name)
register_chrdev 函数用于注册字符设备,此函数一共有三个参数,这三个参数的含义如下:
  * major: 主设备号, Linux 下每个设备都有一个设备号,设备号分为主设备号和次设备号两部分,关于设备号后面会详细讲解。
  * name:设备名字,指向一串字符串。
  * fops: 结构体 file_operations 类型指针,指向设备的操作函数集合变量。

unregister_chrdev 函数用户注销字符设备,此函数有两个参数,这两个参数含义如下:
  * major: 要注销的设备对应的主设备号。
  * name: 要注销的设备对应的设备名。

​ 一般字符设备的注册在驱动模块的入口函数 xxx_init 中进行,字符设备的注销在驱动模块的出口函数 xxx_exit 中进行。在示例代码中字符设备的注册和注销,内容如下

static struct file_operations test_fops;
3/* 驱动入口函数 */
4 static int __init xxx_init(void)
5 
6 /* 入口函数具体内容 */
7 int retvalue = 0;
8 
9/* 注册字符设备驱动 */
10 		retvalue = register_chrdev(200, "chrtest", &test_fops);
11 		if(retvalue < 0)
12 /* 字符设备注册失败,自行处理 */
13 
14 return 0;
15 
16
17 /* 驱动出口函数 */
18 static void __exit xxx_exit(void)
19 
20 /* 注销字符设备驱动 */
21 unregister_chrdev(200, "chrtest");
22 
23
24 /* 将上面两个函数指定为驱动的入口和出口函数 */
25 module_init(xxx_init);
26 module_exit(xxx_exit);
  • 第 1 行,定义了一个 file_operations 结构体变量 test_fops, test_fops 就是设备的操作函数集合,只是此时我们还没有初始化 test_fops 中的 open、 release 等这些成员变量,所以这个操作函数集合还是空的。

  • 第 10 行,调用函数 register_chrdev 注册字符设备,主设备号为 200,设备名字为“chrtest”,设备操作函数集合就是第 1 行定义的 test_fops。要注意的一点就是,选择没有被使用的主设备号,输入命令“cat /proc/devices”可以查看当前已经被使用掉的设备号

    可以列出当前系统中所有的字符设备和块设备,其中第 1 列就是设备对应的主设备号。 200 这个主设备号在我的开发板中并没有被使用,所以我这里就用了 200 这个主设备号。

  • 第 21 行,调用函数 unregister_chrdev 注销主设备号为 200 的这个设备。

2.3 实现设备的具体操作函数

file_operations 结构体就是设备的具体操作函数 ,初始化其中的open、release、 read 和 write 等具体的设备操作函数。

假设对 chrtest这个设备有如下两个要求:
1、能够对 chrtest 进行打开和关闭操作设备打开和关闭是最基本的要求,几乎所有的设备都得提供打开和关闭的功能。因此我们需要实现 file_operations 中的 open 和 release 这两个函数。
2、对 chrtest 进行读写操作
假设 chrtest 这个设备控制着一段缓冲区(内存),应用程序需要通过 read 和 write 这两个函数对 chrtest 的缓冲区进行读写操作。所以需要实现 file_operations 中的 read 和 write 这两个函数 。

1 /* 打开设备 */
2 static int chrtest_open(struct inode *inode, struct file *filp)
3 
4 /* 用户实现具体功能 */
5 return 0;
6 
7 
8/* 从设备读取 */
9 static ssize_t chrtest_read(struct file *filp, char __user *buf,size_t cnt, loff_t *offt)
10 
11 /* 用户实现具体功能 */
12 return 0;
13 
14
15 /* 向设备写数据 */
16 static ssize_t chrtest_write(struct file *filp,const char __user *buf,size_t cnt, loff_t *offt)
17 
18 /* 用户实现具体功能 */
19 return 0;
20 
21
22 /* 关闭/释放设备 */
23 static int chrtest_release(struct inode *inode, struct file *filp)
24 
25 /* 用户实现具体功能 */
26 return 0;
27 
28
29 static struct file_operations test_fops = 
30 .owner = THIS_MODULE,
31 .open = chrtest_open,
32 .read = chrtest_read,
33 .write = chrtest_write,
34 .release = chrtest_release,
35 ;
36
37 /* 驱动入口函数 */
38 static int __init xxx_init(void)
39 
40 /* 入口函数具体内容 */
41 int retvalue = 0;
42
43 /* 注册字符设备驱动 */
44 retvalue = register_chrdev(200, "chrtest", &test_fops);
45 if(retvalue < 0)
46 /* 字符设备注册失败,自行处理 */
47 
48 return 0;
49 
50
51 /* 驱动出口函数 */
52 static void __exit xxx_exit(void)
53 
54 /* 注销字符设备驱动 */
55 unregister_chrdev(200, "chrtest");
56 
57
58 /* 将上面两个函数指定为驱动的入口和出口函数 */
59 module_init(xxx_init);
60 module_exit(xxx_exit);

​ 编写了四个函数: chrtest_open、 chrtest_read、 chrtest_write和 chrtest_release。这四个函数就是 chrtest 设备的 open、 read、 write 和 release 操作函数。第 29行~35 行初始化 test_fops 的 open、 read、 write 和 release 这四个成员变量。

2.4 添加 LICENSE 和作者信息

​ 在驱动中加入 LICENSE 信息和作者信息,其中 LICENSE 是必须添加的,否则的话编译的时候会报错,作者信息可以添加也可以不添加。 LICENSE 和作者信息的添加使用如下两个函数:

MODULE_LICENSE() //添加模块 LICENSE 信息
MODULE_AUTHOR() //添加模块作者信息

3 Linux 设备号

3.1 设备号的组成

​ Linux 中每个设备都有一个设备号,设备号由主设备号和次设备号两部分组成,主设备号表示某一个具体的驱动,次设备号表示使用这个驱动的各个设备。 Linux 提供了一个名为 dev_t 的数据类型表示设备号, dev_t 定义在文件 include/linux/types.h 里面,定义如下:

											设备号 dev_t
typedef __u32 __kernel_dev_t;
......
typedef __kernel_dev_t dev_t;

typedef unsigned int __u32;

dev_t 其实就是 unsigned int 类型,是一个 32 位的数据类型。这 32 位的数据构 成了主设备号和次设备号两部分,其中高 12 位为主设备号, 低 20 位为次设备号

因此 Linux系统中主设备号范围为 0~4095,在选择主设备号的时候一定不要超过这个范围。在文件 include/linux/kdev_t.h 中提供了几个关于设备号的操作函数(本质是宏)

           									设备号操作函数
6  #define MINORBITS 20
7  #define MINORMASK ((1U << MINORBITS) - 1)
8
9  #define MAJOR(dev) ((unsigned int) ((dev) >> MINORBITS))
10 #define MINOR(dev) ((unsigned int) ((dev) & MINORMASK))
11 #define MKDEV(ma,mi) (((ma) << MINORBITS) | (mi))

第 6 行,宏 MINORBITS 表示次设备号位数,一共是 20 位。
第 7 行,宏 MINORMASK 表示次设备号掩码。
第 9 行,宏 MAJOR 用于从 dev_t 中获取主设备号,将 dev_t 右移 20 位即可。
第 10 行,宏 MINOR 用于从 dev_t 中获取次设备号,取 dev_t 的低 20 位的值即可。
第 11 行,宏 MKDEV 用于将给定的主设备号和次设备号的值组合成 dev_t 类型的设备号。

3.2 设备号的分配

1、静态分配设备号

​ 使用“cat /proc/devices”命令即可查看当前系统中所有已经使用了的设备号, 已经分配掉的主设备号我们就不能用了 。

2、动态分配设备号

​ Linux 社区推荐使用动态分配设备号,在注册字符设备之前先申请一个设备号,系统会自动给你一个没有被使用的设备号,这样就避免了冲突。卸载驱动的时候释放掉这个设备号即可,设备号的申请函数如下:

int alloc_chrdev_region(dev_t *dev, unsigned baseminor, unsigned count, const char *name)

函数 alloc_chrdev_region 用于申请设备号,此函数有 4 个参数:

  • dev:保存申请到的设备号。
  • baseminor: 次设备号起始地址, alloc_chrdev_region 可以申请一段连续的多个设备号,这些设备号的主设备号一样,但是次设备号不同,次设备号以 baseminor 为起始地址地址开始递增。一般 baseminor 为 0,也就是说次设备号从 0 开始。
  • count: 要申请的设备号数量。
  • name:设备名字。

注销字符设备之后要释放掉设备号,设备号释放函数如下:

void unregister_chrdev_region(dev_t from, unsigned count)
  • from:要释放的设备号。
  • count: 表示从 from 开始,要释放的设备号数量。

4 chrdevbase 字符设备驱动开发实验

​ 以 chrdevbase 这个虚拟设备为例,完整的编写一个字符设备驱动模块。 chrdevbase 不是实际存在的一个设备,为了方便讲解字符设备的开发而引入的一个虚拟设备。chrdevbase 设备有两个缓冲区,一个为读缓冲区,一个为写缓冲区,这两个缓冲区的大小都为 100 字节。在应用程序中可以向 chrdevbase 设备的写缓冲区中写入数据,从读缓冲区中读取数据。 chrdevbase 这个虚拟设备的功能很简单,但是它包含了字符设备的最基本功能 .

4.1 实验程序编写

​ 应用程序调用 open 函数打开 chrdevbase 这个设备,打开以后可以使用 write 函数向chrdevbase 的写缓冲区 writebuf 中写入数据(不超过 100 个字节),也可以使用 read 函数读取读缓冲区 readbuf 中的数据操作,操作完成以后应用程序使用 close 函数关闭 chrdevbase 设备。

  • chrdevbase.c 文件
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/ide.h>
#include <linux/init.h>
#include <linux/module.h>

#define CHRDEVBASE_MAJOR	200				/* 主设备号 */
#define CHRDEVBASE_NAME		"chrdevbase" 	/* 设备名   */

static char readbuf[100];		/* 读缓冲区 */
static char writebuf[100];		/* 写缓冲区 */
static char kerneldata[] = "kernel data!";

/*
* @description : 打开设备
* @param – inode : 传递给驱动的 inode
* @param - filp : 设备文件, file 结构体有个叫做 private_data 的成员变量
* 					一般在 open 的时候将 private_data 指向设备结构体。
* @return : 0 成功;其他 失败
*/
static int chrdevbase_open(struct inode *inode, struct file *filp)

	//printk("chrdevbase open!\\r\\n");
	return 0;



/*
* @description : 从设备读取数据
* @param - filp : 要打开的设备文件(文件描述符)
* @param - buf : 返回给用户空间的数据缓冲区
* @param - cnt : 要读取的数据长度
* @param - offt : 相对于文件首地址的偏移
* @return : 读取的字节数,如果为负值,表示读取失败
*/
static ssize_t chrdevbase_read(struct file *filp, char __user *buf, size_t cnt, loff_t *offt)

	int retvalue = 0;
	
	/* 向用户空间发送数据 */
	memcpy(readbuf, kerneldata, sizeof(kerneldata));
	retvalue = copy_to_user(buf, readbufLinux驱动开发:字符设备驱动开发

Linux驱动开发:字符设备驱动开发

Linux驱动开发:字符设备驱动开发

linux驱动开发学习二:创建一个阻塞型的字符设备

Linux驱动开发:字符设备驱动开发实战

Linux驱动开发:字符设备驱动开发实战