en an integer matrix, find the length of the longest increasing path.
From each cell, you can either move to four directions: left, right, up or down. You may NOT move diagonally or move outside of the boundary (i.e. wrap-around is not allowed).
Example 1:
nums = [ [9,9,4], [6,6,8], [2,1,1] ]
Return 4
The longest increasing path is [1, 2, 6, 9]
.
Example 2:
nums = [ [3,4,5], [3,2,6], [2,2,1] ]
Return 4
The longest increasing path is [3, 4, 5, 6]
. Moving diagonally is not allowed.
Credits:
Special thanks to @dietpepsi for adding this problem and creating all test cases.
public int longestIncreasingPath(int[][] matrix) { if(matrix.length<=0 || matrix[0].length <=0) return 0; int max=0, n = matrix.length, m = matrix[0].length; int [][] cache = new int[n][m]; for(int i=0;i<matrix.length;i++){ for(int j=0;j<matrix[0].length;j++) { max = Math.max(max, maxLen(matrix, Integer.MIN_VALUE, i, j, cache)); } } return max; } public int maxLen(int[][] matrix, int min, int r, int c, int[][] cache) { if(r<0 || c<0 || r>=matrix.length || c>= matrix[0].length) { return 0; } if(matrix[r][c] <= min) { return 0; } if(cache[r][c] != 0) { return cache[r][c]; } min = matrix[r][c]; int up = maxLen(matrix, min, r-1, c, cache) + 1; int left = maxLen(matrix, min, r, c-1, cache) + 1; int right = maxLen(matrix, min, r, c+1, cache) + 1; int down = maxLen(matrix, min, r+1, c, cache) + 1; cache[r][c] = Math.max(up, Math.max(left, Math.max(right,down))); return cache[r][c]; }