You have a total of n coins that you want to form in a staircase shape, where every k-th row must have exactly k coins.
Given n, find the total number of full staircase rows that can be formed.
n is a non-negative integer and fits within the range of a 32-bit signed integer.
Example 1:
n = 5
The coins can form the following rows:
¤
¤ ¤
¤ ¤
Because the 3rd row is incomplete, we return 2.
Example 2:
n = 8
The coins can form the following rows:
¤
¤ ¤
¤ ¤ ¤
¤ ¤
Because the 4th row is incomplete, we return 3.
题意:给定n枚硬币,将n枚硬币组成阶梯形状,要求第k行正好有k枚硬币。
对给定的数量n,判断可以形成的完整阶梯的个数。
已知n是一个非负整数,并在32位有符号整数范围内。
没有想出很好的解决方法,直接判断的。
public int arrangeCoins(int n) { int step = 1; while(n >= step){ n -= step; step++; } return step - 1; }
然后参考了LeetCode中的答案:https://leetcode.com/problems/arranging-coins/discuss/92274
方法二:
利用二分法,找出前i行之和刚好大于n的临界点,这样i - 1就是能排满的行数。
left = 1(第1行),right = n(第n行)。利用二分法找i,将mid看成i. mid = left + (right - left) / 2.
则利用等差数列求和公式,第mid行之和为:sum = (1 + mid) * mid / 2
public int arrangeCoins(int n) { if (n <= 1) return n; long left = 1, right = n; while (left <= right) { long mid = left + (right - left) / 2; if (mid * (mid + 1) / 2 <= n) left = mid + 1; else right = mid - 1; } return (int) left - 1; }
方法三:
利用等差数列求和的性质,前x项和为:n = (1 + x) * x / 2;
则可转换为:x2 + x - 2 * n = 0,根据一元二次方程的求根公式,可得x = Math.sqrt(1 + 8 * n) - 1) / 2
将n变成long类型是为了避免溢出的情况
public int arrangeCoins(int n) { return (int)(Math.sqrt(1 + 8 * (long)n) - 1) / 2; }