配置YOLO2(ubuntu16.04+cuda8.0+opencv3.1.0)

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了配置YOLO2(ubuntu16.04+cuda8.0+opencv3.1.0)相关的知识,希望对你有一定的参考价值。

要求已经安装好了CUDA 8.0 以及OpenCV3.1.0

YOLO官方网站

配置darknet

git clone https://github.com/pjreddie/darknet  
cd darknet  
make  

如果没有报错输入

./darknet  

得到输出

./darknet <function>  

说明darknet配置成功

打开Makefile文件,将开头几行改为

GPU=1
CUDNN=1
OPENCV=1

接着查询自己GPU的计算能力,查看Makefile是否包含,如下我的GPU计算能力为6.1,调整后为:

ARCH= -gencode arch=compute_30,code=sm_30 \\
      -gencode arch=compute_35,code=sm_35 \\
      -gencode arch=compute_50,code=[sm_50,compute_50] \\
      -gencode arch=compute_61,code=[sm_61,compute_61] \\
      -gencode arch=compute_52,code=[sm_52,compute_52]

之后重新编译,就可以实现基于cuda和opencv的编译

下载预训练文件

wget https://pjreddie.com/media/files/yolo.weights  

测试

./darknet detect cfg/yolo.cfg yolo.weights data/dog.jpg  

我得到的结果是:

layer     filters    size              input                output
    0 conv     32  3 x 3 / 1   608 x 608 x   3   ->   608 x 608 x  32
    1 max          2 x 2 / 2   608 x 608 x  32   ->   304 x 304 x  32
    2 conv     64  3 x 3 / 1   304 x 304 x  32   ->   304 x 304 x  64
    3 max          2 x 2 / 2   304 x 304 x  64   ->   152 x 152 x  64
    4 conv    128  3 x 3 / 1   152 x 152 x  64   ->   152 x 152 x 128
    5 conv     64  1 x 1 / 1   152 x 152 x 128   ->   152 x 152 x  64
    6 conv    128  3 x 3 / 1   152 x 152 x  64   ->   152 x 152 x 128
    7 max          2 x 2 / 2   152 x 152 x 128   ->    76 x  76 x 128
    8 conv    256  3 x 3 / 1    76 x  76 x 128   ->    76 x  76 x 256
    9 conv    128  1 x 1 / 1    76 x  76 x 256   ->    76 x  76 x 128
   10 conv    256  3 x 3 / 1    76 x  76 x 128   ->    76 x  76 x 256
   11 max          2 x 2 / 2    76 x  76 x 256   ->    38 x  38 x 256
   12 conv    512  3 x 3 / 1    38 x  38 x 256   ->    38 x  38 x 512
   13 conv    256  1 x 1 / 1    38 x  38 x 512   ->    38 x  38 x 256
   14 conv    512  3 x 3 / 1    38 x  38 x 256   ->    38 x  38 x 512
   15 conv    256  1 x 1 / 1    38 x  38 x 512   ->    38 x  38 x 256
   16 conv    512  3 x 3 / 1    38 x  38 x 256   ->    38 x  38 x 512
   17 max          2 x 2 / 2    38 x  38 x 512   ->    19 x  19 x 512
   18 conv   1024  3 x 3 / 1    19 x  19 x 512   ->    19 x  19 x1024
   19 conv    512  1 x 1 / 1    19 x  19 x1024   ->    19 x  19 x 512
   20 conv   1024  3 x 3 / 1    19 x  19 x 512   ->    19 x  19 x1024
   21 conv    512  1 x 1 / 1    19 x  19 x1024   ->    19 x  19 x 512
   22 conv   1024  3 x 3 / 1    19 x  19 x 512   ->    19 x  19 x1024
   23 conv   1024  3 x 3 / 1    19 x  19 x1024   ->    19 x  19 x1024
   24 conv   1024  3 x 3 / 1    19 x  19 x1024   ->    19 x  19 x1024
   25 route  16
   26 conv     64  1 x 1 / 1    38 x  38 x 512   ->    38 x  38 x  64
   27 reorg              / 2    38 x  38 x  64   ->    19 x  19 x 256
   28 route  27 24
   29 conv   1024  3 x 3 / 1    19 x  19 x1280   ->    19 x  19 x1024
   30 conv    425  1 x 1 / 1    19 x  19 x1024   ->    19 x  19 x 425
   31 detection
mask_scale: Using default \'1.000000\'
Loading weights from yolo.weights...Done!
data/dog.jpg: Predicted in 0.070790 seconds.
dog: 82%
car: 26%
truck: 65%
bicycle: 85%
init done 
opengl support available 

 

以上是关于配置YOLO2(ubuntu16.04+cuda8.0+opencv3.1.0)的主要内容,如果未能解决你的问题,请参考以下文章

Ubuntu 16.04系统下CUDA8.0配置Caffe教程

Ubuntu16.04 +cuda8.0+cudnn+caffe+theano+tensorflow配置明细

ubuntu16.04 安装配置matlab ,python ,cuda8.0,cudnn,opencv3.1的caffe环境

Keras学习环境配置-GPU加速版(Ubuntu 16.04 + CUDA8.0 + cuDNN6.0 + Tensorflow)

深度学习主机环境配置: Ubuntu16.04 + GeForce GTX 1070 + CUDA8.0 + cuDNN5.1 + TensorFlow

GTX 1080+Ubuntu16.04+CUDA8.0+cuDNN5.0+TensorFlow