Linux内核的三种调度策略:
1,SCHED_OTHER 分时调度策略,
2,SCHED_FIFO实时调度策略,先到先服务。一旦占用cpu则一直运行。一直运行直到有更高优先级任务到达或自己放弃
首先,可以通过以下两个函数来获得线程可以设置的最高和最低优先级,函数中的策略即上述三种策略的宏定义:
int sched_get_priority_max(int policy);
int sched_get_priority_min(int policy);
SCHED_OTHER是不支持优先级使用的,而SCHED_FIFO和SCHED_RR支持优先级的使用,他们分别为1和99,数值越大优先级越高。
设置和获取优先级通过以下两个函数
|
系统创建线程时,默认的线程是SCHED_OTHER。所以如果我们要改变线程的调度策略的话,可以通过下面的这个函数实现。
|
|
|
|
这里测试一下其中的两种特性,SCHED_OTHER和SCHED_RR,还有就是优先级的问题,是不是能够保证,高优先级的线程,就可以保证先运行。
下面的这个测试程序,创建了三个线程,默认创建的线程的调度策略是SCHED_OTHER,其余的两个线程的调度策略设置成SCHED_RR。我的Linux的内核版本是2.6.31。SCHED_RR是根据时间片来确定线程的调度。时间片用完了,不管这个线程的优先级有多高都不会在运行,而是进入就绪队列中,等待下一个时间片的到了,那这个时间片到底要持续多长时间?在《深入理解Linux内核》中的第七章进程调度中,是这样描诉的,Linux采取单凭经验的方法,即选择尽可能长、同时能保持良好相应时间的一个时间片。这里也没有给出一个具体的时间来,可能会根据不同的CPU
来定,还有就是多CPU 的情况。
|
下面是该程序的其中之一的运行结果:
|
这里我们可以看到,由于线程3的调度策略是SCHED_OTHER,而线程2的调度策略是SCHED_RR,所以,在Thread3中,线程3被线程1,线程2给抢占了。由于线程1的优先级大于线程2的优先级,所以,在线程1以先于线程2运行,不过,这里线程2有一部分代码还是先于线程1运行了。
我原以为,只要线程的优先级高,就会一定先运行,其实,这样的理解是片面的,特别是在SMP的PC机上更会增加其不确定性。
其实,普通进程的调度,是CPU根据进程优先级算出时间片,这样并不能一定保证高优先级的进程一定先运行,只不过和优先级低的进程相比,通常优先级较高的进程获得的CPU时间片会更长而已。其实,如果要想保证一个线程运行完在运行另一个线程的话,就要使用多线程的同步技术,信号量,条件变量等方法。而不是绝对依靠优先级的高低,来保证。
不过,从运行的结果上,我们可以看到,调度策略为SCHED_RR的线程1,线程2确实抢占了调度策略为SCHED_OTHER的线程3。这个是可以理解的,由于SCHER_RR是实时调度策略。
只有在下述事件之一发生时,实时进程才会被另外一个进程取代。
(1) 进程被另外一个具有更高实时优先级的实时进程抢占。
(2) 进程执行了阻塞操作并进入睡眠
(3)进程停止(处于TASK_STOPPED 或TASK_TRACED状态)或被杀死。
(4)进程通过调用系统调用sched_yield(),自愿放弃CPU 。
(5)进程基于时间片轮转的实时进程(SCHED_RR),而且用完了它的时间片。
基于时间片轮转的实时进程是,不是真正的改变进程的优先级,而是改变进程的基本时间片的长度。所以基于时间片轮转的进程调度,并不能保证高优先级的进程先运行。
下面是另一种运行结果:
|
可以看出并没有每一次都保证高优先级的线程先运行。