Linux时间子系统之四:Timer在用户和内核空间流程
Posted Arnold Lu@南京
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Linux时间子系统之四:Timer在用户和内核空间流程相关的知识,希望对你有一定的参考价值。
用户空间应用中创建一个Timer(alarm/setitimer/POSIX Timer等等),然后程序继续执行;
内核进入创建/设置Timer系统调用,开始计时,在超时后通过何种方式通知用户空间;
用户空间又是如何执行回调函数的。
下面就着重这个流程,梳理一下Timer周期中用户空间和内核空间涉及到的相关模块。
1. 总体框架
关注的Timer(alarm/setitimer/POSIX Timer),都在libc/librt/libphtread中定义。librt是POSIX.1b Realtime扩展的实现,这其中就包括POSIX Timer。
其中alarm/setitimer都调用libc,POSIX Timer调用librt/libpthread。
总体框架如下:
❶应用调用库通过系统调用创建Timer,同时自身注册信号处理函数。
❷库提供通用接口,转换成系统调用。
❸内核Timer相关系统调用(setitimer/timer_create),通过hrtimer创建相应的定时器,在超时后调用hrtimer超时函数发送signal给用户空间进程。
❹用户空间进程在收到信号之后,执行对应的信号处理函数。
至此,Timer一个闭环完成。
下面分alarm/setitimer和POSIX Timer两种类型的Timer,来介绍其流程。
2. alarm/setitimer流程
linux/common/alarm.c中实现了alarm,可以看到和setitimer相同的接口。
#ifdef __NR_alarm _syscall1(unsigned int, alarm, unsigned int, seconds) #else #include <sys/time.h> unsigned int alarm(unsigned int seconds) { ... if (setitimer(ITIMER_REAL, &new, &old) < 0) { return 0; } ... } #endif
即使定义了alarm系统调用,在内核中alarm和setitimer也是调用相同的do_setitimer。所以这两个API在内核的实现是一致的。
SYSCALL_DEFINE1(alarm, unsigned int, seconds) { return alarm_setitimer(seconds); } unsigned int alarm_setitimer(unsigned int seconds) { ... do_setitimer(ITIMER_REAL, &it_new, &it_old); ... } SYSCALL_DEFINE3(setitimer, int, which, struct itimerval __user *, value, struct itimerval __user *, ovalue) { ...
error = do_setitimer(which, &set_buffer, ovalue ? &get_buffer : NULL); ...
}
所以研究do_setitimer就可以分析这两个API的内核实现。
int do_setitimer(int which, struct itimerval *value, struct itimerval *ovalue) { ... switch (which) { case ITIMER_REAL: again: spin_lock_irq(&tsk->sighand->siglock); timer = &tsk->signal->real_timer;---------------------------------这里是task_struct结构体中的real_timer这个hrtimer。所以alarm/setitimer一个进程/线程空间中只能存在一个。 if (ovalue) { ovalue->it_value = itimer_get_remtime(timer); ovalue->it_interval = ktime_to_timeval(tsk->signal->it_real_incr); } /* We are sharing ->siglock with it_real_fn() */ if (hrtimer_try_to_cancel(timer) < 0) { spin_unlock_irq(&tsk->sighand->siglock); goto again; } expires = timeval_to_ktime(value->it_value); if (expires.tv64 != 0) { tsk->signal->it_real_incr = timeval_to_ktime(value->it_interval); hrtimer_start(timer, expires, HRTIMER_MODE_REL);--------------启动alarm/setitimer对应的hrtimer。 } else tsk->signal->it_real_incr.tv64 = 0; trace_itimer_state(ITIMER_REAL, value, 0); spin_unlock_irq(&tsk->sighand->siglock); break; ... } return 0; }
那么real_timer这个hrtimer的处理函数在何时初始化的呢?
可以看出在进程创建的时候,已经初始化了real_timer。对应的超时函数是it_real_fn,发送SIGALRM信号给对应的进程。然后用户空间执行SIGALRM处理函数。
do_fork--> copy_process--> copy_signal--> static int copy_signal(unsigned long clone_flags, struct task_struct *tsk) { ... hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);--------初始化real_timer定时器。 sig->real_timer.function = it_real_fn; ... } /* * The timer is automagically restarted, when interval != 0 */ enum hrtimer_restart it_real_fn(struct hrtimer *timer) { struct signal_struct *sig = container_of(timer, struct signal_struct, real_timer); trace_itimer_expire(ITIMER_REAL, sig->leader_pid, 0); kill_pid_info(SIGALRM, SEND_SIG_PRIV, sig->leader_pid);--------------------发送SIGALRM信号。 return HRTIMER_NORESTART; }
3. POSIX Timer流程
POSIX Timer在libpthread\\nptl\\sysdeps\\unix\\sysv\\linux\\timer_create.c中创建。
int timer_create ( clockid_t clock_id, struct sigevent *evp, timer_t *timerid) { # undef timer_create # ifndef __ASSUME_POSIX_TIMERS if (__no_posix_timers >= 0) # endif { ... kernel_timer_t ktimerid; int retval = INLINE_SYSCALL (timer_create, 3, syscall_clockid, evp,-------------通过timer_create系统调用创建Timer。 &ktimerid); ... } else { # ifndef __ASSUME_POSIX_TIMERS ... if (__no_posix_timers > 0) # endif { /* Create the helper thread. */ pthread_once (&__helper_once, __start_helper_thread);----------------------单独创建线程来处理,一次初始化。 if (__helper_tid == 0) { /* No resources to start the helper thread. */ __set_errno (EAGAIN); return -1; } ... res = INTERNAL_SYSCALL (timer_create, err, 3,------------------------------通过timer_create系统调用来创建Timer。 syscall_clockid, &sev, &newp->ktimerid); ... } } } # ifndef __ASSUME_POSIX_TIMERS /* Compatibility code. */ return compat_timer_create (clock_id, evp, timerid); # endif }
__start_helper_thread-->
timer_helper_thread-->
timer_sigev_thread-----------------------------------------------------------此线程在定时器超时后,才会创建。
thrfunc------------------------------------------------------------------调用用户提供的超时回调函数。
再来看看内核中的实现,这里主要看common_timer_create和alarm_timer_create两种类型。
SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock, struct sigevent __user *, timer_event_spec, timer_t __user *, created_timer_id) { ...
if (timer_event_spec) { if (copy_from_user(&event, timer_event_spec, sizeof (event))) { error = -EFAULT; goto out; } rcu_read_lock(); new_timer->it_pid = get_pid(good_sigevent(&event));------------如果用户提供了sigevent,获取pid。 rcu_read_unlock(); if (!new_timer->it_pid) { error = -EINVAL; goto out; } } else { memset(&event.sigev_value, 0, sizeof(event.sigev_value)); event.sigev_notify = SIGEV_SIGNAL; event.sigev_signo = SIGALRM; event.sigev_value.sival_int = new_timer->it_id; new_timer->it_pid = get_pid(task_tgid(current));--------------如果没有提供sigevent,使用默认的SIGALRM。 } new_timer->it_sigev_notify = event.sigev_notify; new_timer->sigq->info.si_signo = event.sigev_signo; new_timer->sigq->info.si_value = event.sigev_value; new_timer->sigq->info.si_tid = new_timer->it_id; new_timer->sigq->info.si_code = SI_TIMER; if (copy_to_user(created_timer_id,--------------------------------返回timer_id给用户空间 &new_timer_id, sizeof (new_timer_id))) { error = -EFAULT; goto out; } error = kc->timer_create(new_timer);-----------------------------------------调用common_timer_create或者alarm_timer_create创建定时器 if (error) goto out; ...
} static int common_timer_create(struct k_itimer *new_timer) { hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);-------------初始化hrtimer return 0; }
那么超时函数在哪里设置的呢?
static int common_timer_set(struct k_itimer *timr, int flags, struct itimerspec *new_setting, struct itimerspec *old_setting) { ...
mode = flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL; hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);-------------------重新初始化hrtimer timr->it.real.timer.function = posix_timer_fn;------------------------------hrtimer回调函数 hrtimer_set_expires(timer, timespec_to_ktime(new_setting->it_value)); ... }
在回调函数中,进行了超时处理。
static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer) { ... if (posix_timer_event(timr, si_private)) {----------------------------------发送信号 ... } } ... } int posix_timer_event(struct k_itimer *timr, int si_private) { ... timr->sigq->info.si_sys_private = si_private; rcu_read_lock(); task = pid_task(timr->it_pid, PIDTYPE_PID);-------------------------------根据pid获取task实体 if (task) { shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID); ret = send_sigqueue(timr->sigq, task, shared);------------------------将当前信号队列发送到对应的用户空间对应的task,进程在收到信号后进行相应处理 } rcu_read_unlock(); /* If we failed to send the signal the timer stops. */ return ret > 0; }
那么如果是Alarm类型的Timer,情况如何呢?
static int alarm_timer_create(struct k_itimer *new_timer) { ... alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);-----------初始化alarmtimer,回调函数是alarm_handle_timer ... } static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm, ktime_t now) { ... if ((ptr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) { if (posix_timer_event(ptr, 0) != 0)------------------------------------------和其他POSIX Timer一样发送signal信号 ptr->it_overrun++; } ... } static int alarm_timer_set(struct k_itimer *timr, int flags, struct itimerspec *new_setting, struct itimerspec *old_setting) { ... alarm_start(&timr->it.alarm.alarmtimer, exp);-------------------------------------启动AlarmTimer ... }
4. 总结
所以无论是alarm/setitimer,还是POSIX Timer都是通过发送signal来通知用户应用。只是用户空间处理消息的方式有所不同。
由于Timer经过库的封装,不光要看内核,还需要研究库对API进行了何种封装。才能更好的了解其行为。
也由于库的种类(lig/glib/ulib等)和版本千差万别,所以也需要引起重视。
一个关于libpthread引起的POSIX Timer执行异常情况。
描述:在一个进程中创建三个SIGEV_THREAD类型POSIX Timer,但是超时只执行一个回调函数。其他两个没有被调用。
问题分析:SIGCANCEL这个信号导致,timer_create创建helper thread失败。Timer超时后,回调函数也不会被执行。
解决方法:
void attribute_hidden __start_helper_thread (void) { ... sigset_t ss; sigset_t oss; sigfillset (&ss); /*__sigaddset (&ss, SIGCANCEL); - already done by sigfillset */
__sigaddset (&ss, SIGCANCEL);--------------------------------修改方法
...
}
以上是关于Linux时间子系统之四:Timer在用户和内核空间流程的主要内容,如果未能解决你的问题,请参考以下文章
Linux时间子系统之四:定时器的引擎:clock_event_device