JUC源码学习02重入锁(ReentrantLock)学习

Posted 春秋_XH

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了JUC源码学习02重入锁(ReentrantLock)学习相关的知识,希望对你有一定的参考价值。

重入锁(ReentrantLock)学习

重入锁:也是排他锁:即在同一时刻只允许一个线程进行访问。

一、公平和非公平获取锁的区别

1、公平获取与非公平获取两者对比

公平锁:每次都是从同步队列中的第一个节点获取到锁

非公平性锁:每个线程可以连续多次获取锁

TODO: 缺图

非公平锁缺点:

  • 非公平锁,可能使线程“饥饿”,饥饿出现的情况。

  • 饥饿的原因:当一个线程请求锁时,只要获取了同步状态即成功获取锁。在这个前提下,刚释放锁的线程再次获取同步状态的几率非常大,使得其他线程只能在同步队列中等待。

2、为什么 ReentrankLock 默认是非公平锁实现?

如果把每次线程获取到锁定义为 1 次切换,公平性锁每次都要进行切换,而非公平性锁可以相比较而言减少线程切换。

TODO:缺图

通过实验对比结论:

在测试中,公平性锁与非公平性锁比较,总耗时是其 94.3 倍,总切换次数是其 103 倍。

可见:

  • 公平性锁保证了锁的获取按照 FIFO 原则,而代价是进行了大量的线程切换。

  • 非公平性锁虽然造成了线程“饥饿”,但极少的线程切换,保证了其更大的吞吐量。

二、非公平锁的获取和释放

以非公平锁的获取和释放为例。

1、tryAcquire(int acquires)

java.util.concurrent.locks.ReentrantLock.NonfairSync#tryAcquire

    static final class NonfairSync extends Sync 
        private static final long serialVersionUID = 7316153563782823691L;

        /**
         * Performs lock.  Try immediate barge, backing up to normal
         * acquire on failure.
         */
        final void lock() 
            // 非公平锁的获取:只要 CAS 设置同步状态成功,则表示当前线程获取了锁
            if (compareAndSetState(0, 1))
                setExclusiveOwnerThread(Thread.currentThread());
            else
                acquire(1);
        

        // 非公平锁的获取
        protected final boolean tryAcquire(int acquires) 
            return nonfairTryAcquire(acquires);
        
    

上面代码可以看到:非公平锁的获取,只要 CAS 设置同步状态成功,则表示当前线程获取了锁

1.1 nonfairTryAcquire(int acquires)

		final boolean nonfairTryAcquire(int acquires) 
            final Thread current = Thread.currentThread();
            int c = getState();
            if (c == 0) 
                if (compareAndSetState(0, acquires)) 
                    setExclusiveOwnerThread(current);
                    return true;
                
            
            else if (current == getExclusiveOwnerThread()) 
                // 这里对可重入锁进行了处理:如果一个线程再次获取到,则对同步状态值进行增加
                int nextc = c + acquires;
                if (nextc < 0) // overflow
                    throw new Error("Maximum lock count exceeded");
                setState(nextc);
                return true;
            
            return false;
        

该方法增加了再次获取同步状态的处理逻辑:通过判断当前线程是否为获取锁的线程来决定获取操作是否成功,如果是获取锁的线程再次请求,则将同步状态值进行增加并返回 true。表示获取同步状态成功。

成功获取锁的线程再次获取锁,只是增加了同步状态值。

这也就要求 ReentrantLock 在释放同步状态时减少同步状态值。

2、 tryRelease(int releases)

		protected final boolean tryRelease(int releases) 
            int c = getState() - releases;
            if (Thread.currentThread() != getExclusiveOwnerThread())
                throw new IllegalMonitorStateException();
            boolean free = false;
            if (c == 0) 
               // 最终释放条件:同步状态是否为 0 
                free = true;
               // 将占有线程设置为 null
                setExclusiveOwnerThread(null);
            
            setState(c);
            return free;
        

如果该锁被释放了 n 次,那么前(n-1)次 tryRelease(int releases)方法必须返回 flase,而只有同步状态完全释放了,才能返回 true。可以看到,该方法将同步状态是否为 0 作为最终释放的条件,当同步状态为0 时,将占有线程设置为 null,并返回 true,表示释放成功。

三、公平锁的获取与释放

公平和非公平,是针对锁而言的

如果一个锁是公平的,那么锁的获取顺序就应该符合请求的绝对时间顺序,也就是 FIFO。

下面有代码中有标记其区别:

1、tryAcquire(int acquires)方法

		static final class FairSync extends Sync 
        private static final long serialVersionUID = -3000897897090466540L;

        final void lock() 
            acquire(1);
        

        /**
         * Fair version of tryAcquire.  Don't grant access unless
         * recursive call or no waiters or is first.
         */
        protected final boolean tryAcquire(int acquires) 
            final Thread current = Thread.currentThread();
            int c = getState();
            if (c == 0) 
                // 公平锁的获取与非公平锁区别:hasQueuedPredecessors()
                // 判断条件多了方法:加入了同步队列中当前节点是否有前驱节点的判断
                // 如果该方法返回 true,表示有线程比当前线程更早的请求获取锁,
                // 因此需要等待前驱线程获取锁并释放锁之后才能继续获取锁
                if (!hasQueuedPredecessors() &&
                    compareAndSetState(0, acquires)) 
                   // cas 成功。
                    setExclusiveOwnerThread(current);
                    return true;
                
            
            else if (current == getExclusiveOwnerThread()) 
                int nextc = c + acquires;
                if (nextc < 0)
                    throw new Error("Maximum lock count exceeded");
                setState(nextc);
                return true;
            
            return false;
        
    

2、hasQueuedPredecessors()

公平锁中加入的一个判断条件:加入了同步队列中当前节点是否有前驱节点的判断

  public final boolean hasQueuedPredecessors() 
        // The correctness of this depends on head being initialized
        // before tail and on head.next being accurate if the current
        // thread is first in queue.
        Node t = tail; // Read fields in reverse initialization order
        Node h = head;
        Node s;
        return h != t &&
            ((s = h.next) == null || s.thread != Thread.currentThread());
    

ReentrantLock (重入锁) 源码浅析

一、ReentrantLock简介
ReentrantLock重入锁,顾名思义,就是支持重入的锁,它表示能够支持一个线程对资源的重复加锁;我们之前学习过Synchronized锁,它也是支持重入的一种锁,参考我的另一篇Synchronized 锁的实现原理与应用,Synchronized支持隐式的重入锁,比如递归方法,在方法运行时,执行线程在获取到了锁之后仍能连续多次地获取锁;ReentrantLock虽然不能隐式重入,但是获取到锁的线程多次调用lock方法,不会阻塞进入同步队列;除此之外在获取锁时支持公平或者非公平的选择。
二、主要成员和结构图
①、ReentrantLock关系图
技术图片
②、Sync是ReentrantLock的内部类,继承AQS
技术图片
③、FairSync公平的锁实现,也是ReentrantLock的内部类,继承Sync
技术图片
④、NonfairSync非公平的锁实现,也是ReentrantLock的内部类,继承Sync
技术图片

三、主要的方法
分析一些常用方法,不会介绍AQS,AQS的一些方法参考我的这一篇文章
①、构造方法,我们可以看出默认的无参是非公平锁,有参构造true表示公平,false表示非公平。

// 无参
public ReentrantLock() {
        sync = new NonfairSync();
    }
// 有参
public ReentrantLock(boolean fair) {
        sync = fair ? new FairSync() : new NonfairSync();
    }

②、lock()获取锁,其实就是把state从0变成n(重入锁可以累加)。
实际调用的是sync的lock方法,分公平和非公平。

 public void lock() {
        sync.lock();
    }

公平实现:FairSync,我们发现其实调用的是acquire,其实这个是AQS的acquire,然后aqs的acquire的方法里面又会调用tryAcquire方法,因为这个方法需要同步组件自己去实现,所以ReentrantLock里面重写了AQS的tryAcquire方法,所以我们获取到锁就会返回true,没有就会返回false;然后没有获取到锁的线程就交给AQS去处理。

final void lock() {
            acquire(1);
        }

        /**
         * Fair version of tryAcquire.  Don‘t grant access unless
         * recursive call or no waiters or is first.
         */
        protected final boolean tryAcquire(int acquires) {
            // 获取当前的线程
            final Thread current = Thread.currentThread();
            // 获取锁的状态
            int c = getState();
            if (c == 0) {
                // hasQueuedPredecessors 判断队列还有没有其它node,要保证公平
                // 没有在用cas设置状态
                if (!hasQueuedPredecessors() &&
                        compareAndSetState(0, acquires)) {
                    // 设置获取锁的线程
                    setExclusiveOwnerThread(current);
                    return true;
                }
            }
            // 判断当前线程有没有获取到锁
            else if (current == getExclusiveOwnerThread()) {
                // 获取过了就累加,因为可以重入
                int nextc = c + acquires;
                if (nextc < 0)
                    throw new Error("Maximum lock count exceeded");
                // 重新设置锁的状态
                setState(nextc);
                return true;
            }
            return false;
        }
    }

非公平实现:NonfairSync,我们可以发现基本和公平一样,就没有hasQueuedPredecessors方法,没有遵循FIFO队列的模式,而是不管队列有没有node,自己都可以去获取锁,不需要排队

final void lock() {
            if (compareAndSetState(0, 1))
                setExclusiveOwnerThread(Thread.currentThread());
            else
                acquire(1);
        }

        protected final boolean tryAcquire(int acquires) {
            return nonfairTryAcquire(acquires);
        }
                final boolean nonfairTryAcquire(int acquires) {
            final Thread current = Thread.currentThread();
            int c = getState();
            if (c == 0) {
                if (compareAndSetState(0, acquires)) {
                    setExclusiveOwnerThread(current);
                    return true;
                }
            }
            else if (current == getExclusiveOwnerThread()) {
                int nextc = c + acquires;
                if (nextc < 0) // overflow
                    throw new Error("Maximum lock count exceeded");
                setState(nextc);
                return true;
            }
            return false;
        }

②、lockInterruptibly支持中断的获取锁,其实是调用了AQS的lockInterruptibly方法,在AQS方法里面又回去调用tryAcquire方法,这个方法在上面已经解释过了。

public void lockInterruptibly() throws InterruptedException {
        sync.acquireInterruptibly(1);
    }

AQS的lockInterruptibly方法

public final void acquireInterruptibly(int arg)
            throws InterruptedException {
        if (Thread.interrupted())
            throw new InterruptedException();
        if (!tryAcquire(arg))
            doAcquireInterruptibly(arg);
    }

③、tryLock(long timeout, TimeUnit unit),支持中断,并且在这个基础上增加了超时设置,其实也是调用了AQS的tryAcquireNanos方法,我们发现其实他也是调用的tryAcquire方法。

 public boolean tryLock(long timeout, TimeUnit unit)
            throws InterruptedException {
        return sync.tryAcquireNanos(1, unit.toNanos(timeout));
    }

AQS的tryAcquireNanos方法

public final boolean tryAcquireNanos(int arg, long nanosTimeout)
            throws InterruptedException {
        if (Thread.interrupted())
            throw new InterruptedException();
        return tryAcquire(arg) ||
            doAcquireNanos(arg, nanosTimeout);
    }

④、unlock释放锁,其实就是把state从n(可能发生了锁的重入,需要多次释放)变成0,这个不区分公平与非公平,首先其实也是调用AQS的release方法,然后AQS在调用子类Sync的tryRelease方法。

public void unlock() {
        sync.release(1);
    }

调用Sync的tryRelease方法

protected final boolean tryRelease(int releases) {
            // 获取锁的状态
            int c = getState() - releases;
            // 获得锁的线程才能释放锁
            if (Thread.currentThread() != getExclusiveOwnerThread())
                throw new IllegalMonitorStateException();
            boolean free = false;
            // 直到锁的状态是0,说明锁释放成功,因为有重入锁
            // 说明我们在一个线程里面调用几次lock,就要调用几次unlock,才能最终释放锁
            if (c == 0) {
                free = true;
                // 释放线程的拥有者
                setExclusiveOwnerThread(null);
            }
            // 设置锁的状态
            setState(c);
            return free;
        }

⑤、newCondition方法,创建一个newCondition。

public Condition newCondition() {
        return sync.newCondition();
    }

⑥、getHoldCount方法,获取当前线程获得锁的个数。

public int getHoldCount() {
        return sync.getHoldCount();
    }
        final int getHoldCount() {
            // 当前线程是否获取到锁
            return isHeldExclusively() ? getState() : 0;
        }

⑦、isHeldByCurrentThread方法,当前线程是否获取到锁。

protected final boolean isHeldExclusively() {
            // While we must in general read state before owner,
            // we don‘t need to do so to check if current thread is owner
            return getExclusiveOwnerThread() == Thread.currentThread();
        }

⑧、isLocked方法,是否有线程获取到了锁。

final boolean isLocked() {
            return getState() != 0;
        }

⑨、getOwner方法,获取取得锁的线程。
⑩、getQueueLength方法,获取同步队列的数量。

public final int getQueueLength() {
    // 从aqs的尾节点开始往前遍历,除去空节点(但是其实只有第一个节点是空节点),也就是thread != null
        int n = 0;
        for (Node p = tail; p != null; p = p.prev) {
            if (p.thread != null)
                ++n;
        }
        return n;
    }

四、总结

学习ReentrantLock,我们主要需要了解它,公平和非公平的实现,以及重入锁的获取与释放的流程,还有最重要的就是要了解AQS,这是实现重入锁的基础,因为ReentrantLock只是实现了AQS获取锁和释放锁制定的模板方法的语义,所以要理解ReentrantLock获取锁成功和失败具体都做了什么逻辑,和AQS的实现是离不开的。
可以参考我的这一篇AQS的文章
参考 《Java 并发编程的艺术》

以上是关于JUC源码学习02重入锁(ReentrantLock)学习的主要内容,如果未能解决你的问题,请参考以下文章

JUC并发编程 JUC AQS原理 -- AQS概述 & 实现不可重入锁

java--JUC--公平锁,非公平锁,可重入锁,自旋锁,死锁

Java 重入锁 ReentrantLock 原理分析

并发编程-concurrent指南-Lock-可重入锁(ReentrantLock)

JUC并发编程 -- ReentrantLock可重入锁(可重入 & 可打断 & 锁超时 & 锁超时-解决哲学家就餐)

JUC并发编程 共享模式之工具 JUC 读写锁 ReentrantReadWriteLock -- ReentrantReadWriteLock(不可重入锁)使用 & 注意事项