Linux多线程实现及线程同步函数分析
Posted *平凡*随风舞
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Linux多线程实现及线程同步函数分析相关的知识,希望对你有一定的参考价值。
在Linux中,多线程的本质仍是进程,它与进程的区别:
进程:独立地址空间,拥有PCB
线程:也有PCB,但没有独立的地址空间(共享)
线程的特点:
1,线程是轻量级进程,有PCB,创建线程使用的底层函数和进程一样,都是clone
2,从内核看进程和线程是一样的,都有各自不同的PCB
3,进程可以蜕变成线程
4,在LINUX中,线程是最小的执行单位,进程是最小的分配资源单位
查看指定线程的LWP号命令:
ps -Lf pid
线程优点:
提高程序并发性
开销小
数据通信,共享数据方便
线程缺点:
库函数 ,不稳定
调试,编写困难,GDB
对信号支持不好
线程属性,可以在一开始就设置好分离态,具体在下面的代码有说明!
线程同步,主要有互斥锁mutex,读写锁,条件变量,信号量
线程创建函数原型:
int pthread_create( pthread_t *thread, // 线程ID const pthread_attr_t *attr, // 线程属性 void *(*start_routine) (void *), // 线程主函数 void *arg // 主函数参数 );
粘上基本创建线程模型:
#include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/types.h> #include <unistd.h> #include <pthread.h> //函数回调 void *mythread(void *args) { printf("child thread id==[%ld]\n", pthread_self()); } int main() { pthread_t thread; //创建一个线程 int ret = pthread_create(&thread, NULL, mythread, NULL); if(ret!=0) { printf("pthread_create error, [%s]\n", strerror(ret)); return -1; } printf("main thread id==[%ld]\n", pthread_self()); sleep(1); }
线程属性,在创建时分离代码:
#include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/types.h> #include <unistd.h> #include <pthread.h> void *mythread(void *args) { printf("child thread id==[%ld]\n", pthread_self()); } int main() { pthread_t thread; //线程属性 pthread_attr_t attr; //线程属性初始化 pthread_attr_init(&attr); //设置线程到分离属性 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); //创建一个线程 int ret = pthread_create(&thread, &attr, mythread, NULL); if(ret!=0) { printf("pthread_create error, [%s]\n", strerror(ret)); return -1; } printf("main thread id==[%ld]\n", pthread_self()); sleep(1); ret = pthread_join(thread, NULL); if(ret!=0) { printf("pthread_join error, [%s]\n", strerror(ret)); } //释放线程属性 pthread_attr_destroy(&attr); return 0; }
互斥锁实现代码:
#include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/types.h> #include <unistd.h> #include <pthread.h> #include <time.h> //定义一把锁 pthread_mutex_t mutex; void *mythread1(void *args) { while(1) { //加锁 pthread_mutex_lock(&mutex); pthread_mutex_lock(&mutex); printf("hello "); sleep(rand()%3); printf("world\n"); //解锁 pthread_mutex_unlock(&mutex); sleep(rand()%3); } pthread_exit(NULL); } void *mythread2(void *args) { while(1) { //加锁 pthread_mutex_lock(&mutex); printf("HELLO "); sleep(rand()%3); printf("WORLD\n"); //解锁 pthread_mutex_unlock(&mutex); sleep(rand()%3); } pthread_exit(NULL); } int main() { int ret; pthread_t thread1; pthread_t thread2; //随机数种子 srand(time(NULL)); //互斥锁初始化 pthread_mutex_init(&mutex, NULL); ret = pthread_create(&thread1, NULL, mythread1, NULL); if(ret!=0) { printf("pthread_create error, [%s]\n", strerror(ret)); return -1; } ret = pthread_create(&thread2, NULL, mythread2, NULL); if(ret!=0) { printf("pthread_create error, [%s]\n", strerror(ret)); return -1; } //等待线程结束 pthread_join(thread1, NULL); pthread_join(thread2, NULL); //释放互斥锁 pthread_mutex_destroy(&mutex); return 0; }
读写锁代码:
#include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/types.h> #include <unistd.h> #include <pthread.h> int number = 0; //定义一把读写锁 pthread_rwlock_t rwlock; void *fun_write(void *args) { int i = *(int *)args; int n; while(1) { //加写锁 pthread_rwlock_wrlock(&rwlock); n = number; n++; //sleep(rand()%3); number = n; printf("W->[%d]:[%d]\n", i, number); //解写锁 pthread_rwlock_unlock(&rwlock); sleep(rand()%3); } pthread_exit(NULL); } void *fun_read(void *args) { int i = *(int *)args; while(1) { //加读锁 pthread_rwlock_rdlock(&rwlock); printf("R->[%d]:[%d]\n", i, number); //解锁 pthread_rwlock_unlock(&rwlock); sleep(rand()%3); } pthread_exit(NULL); } int main() { int i; int ret; int n = 8; int arr[8]; pthread_t thread[8]; //读写锁初始化 pthread_rwlock_init(&rwlock, NULL); //创建3个写线程 for(i=0; i<3; i++) { arr[i] = i; ret = pthread_create(&thread[i], NULL, fun_write, (void *)&arr[i]); if(ret!=0) { printf("pthread_create error, [%s]\n", strerror(ret)); return -1; } } //创建5个读线程 for(i=3; i<n; i++) { arr[i] = i; ret = pthread_create(&thread[i], NULL, fun_read, (void *)&arr[i]); if(ret!=0) { printf("pthread_create error, [%s]\n", strerror(ret)); return -1; } } for(i=0; i<n; i++) { //回收子线程 pthread_join(thread[i], NULL); } //释放读写锁资源 pthread_rwlock_destroy(&rwlock); return 0; }
cond条件变量代码:
#include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/types.h> #include <unistd.h> #include <pthread.h> typedef struct node { int data; struct node *next; }NODE; //链表头节点指针 NODE *head = NULL; //互斥锁 pthread_mutex_t mutex; //条件变量 pthread_cond_t cond; //生产者线程处理函数 void *producer(void *args) { NODE *pNode = NULL; while(1) { pNode = (NODE *)malloc(sizeof(NODE)); if(pNode==NULL) { perror("malloc error\n"); exit(1); } pNode->data = rand()%1000; //lock共享资源 pthread_mutex_lock(&mutex); pNode->next = head; head=pNode; printf("P:[%d]\n", head->data); //对共享资源解锁 pthread_mutex_unlock(&mutex); //使用条件变量解除对线程到阻塞 pthread_cond_signal(&cond); sleep(rand()%3); } } //消费者线程处理函数 void *consumer(void *args) { NODE *pNode = NULL; while(1) { //lock共享资源 pthread_mutex_lock(&mutex); if(head==NULL) { //条件不满足阻塞等待head不为空 pthread_cond_wait(&cond, &mutex); } printf("C:[%d]\n", head->data); pNode = head; head = head->next; //对共享资源解锁 pthread_mutex_unlock(&mutex); free(pNode); pNode = NULL; sleep(rand()%3); } } int main(int argc, char *argv[]) { int ret; pthread_t thread1; pthread_t thread2; pthread_mutex_t mutex; pthread_cond_t cond; //初始化互斥锁 pthread_mutex_init(&mutex, NULL); //初始化条件变量 pthread_cond_init(&cond, NULL); //创建生产者线程 ret = pthread_create(&thread1, NULL, producer, NULL); if(ret!=0) { printf("pthread_create error, [%s]\n", strerror(ret)); return -1; } //创建消费者线程 ret = pthread_create(&thread2, NULL, consumer, NULL); if(ret!=0) { printf("pthread_create error, [%s]\n", strerror(ret)); return -1; } //主线程回收子线程 pthread_join(thread1, NULL); pthread_join(thread2, NULL); //释放锁资源 pthread_mutex_destroy(&mutex); //释放条件变量资源 pthread_cond_destroy(&cond); return 0; }
信号量,经典消费者生产者模型:
#include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/types.h> #include <unistd.h> #include <pthread.h> #include <semaphore.h> typedef struct node { int data; struct node *next; }NODE; //链表头节点指针 NODE *head = NULL; sem_t sem_consumer; sem_t sem_producer; //生产者线程处理函数 void *producer(void *args) { NODE *pNode = NULL; while(1) { pNode = (NODE *)malloc(sizeof(NODE)); if(pNode==NULL) { perror("malloc error\n"); exit(1); } pNode->data = rand()%1000; //sem_producer--, 若为0则阻塞 sem_wait(&sem_producer); pNode->next = head; head=pNode; printf("P:[%d]\n", head->data); //sem_consumer++ sem_post(&sem_consumer); sleep(rand()%3); } } //消费者线程处理函数 void *consumer(void *args) { NODE *pNode = NULL; while(1) { //sem_consumer--, 若为0则阻塞 sem_wait(&sem_consumer); printf("C:[%d]\n", head->data); pNode = head; head = head->next; //sem_producer++ sem_post(&sem_producer); free(pNode); pNode = NULL; sleep(rand()%3); } } int main(int argc, char *argv[]) { int ret; pthread_t thread1; pthread_t thread2; //信号量初始化 sem_init(&sem_producer, 0, 5); sem_init(&sem_consumer, 0, 0); //创建生产者线程 ret = pthread_create(&thread1, NULL, producer, NULL); if(ret!=0) { printf("pthread_create error, [%s]\n", strerror(ret)); return -1; } //创建消费者线程 ret = pthread_create(&thread2, NULL, consumer, NULL); if(ret!=0) { printf("pthread_create error, [%s]\n", strerror(ret)); return -1; } //主线程回收子线程 pthread_join(thread1, NULL); pthread_join(thread2, NULL); //释放信号量资源 sem_destroy(&sem_producer); sem_destroy(&sem_consumer); return 0; }
以上是关于Linux多线程实现及线程同步函数分析的主要内容,如果未能解决你的问题,请参考以下文章