CLIP模型的使用和训练-利用CLIP实现zero-shot的分类任务
Posted 浅草夏洛洛
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了CLIP模型的使用和训练-利用CLIP实现zero-shot的分类任务相关的知识,希望对你有一定的参考价值。
CLIP模型
文章目录
1 论文介绍
1.1 训练阶段
模型架构分为两部分,图像编码器和文本编码器,图像编码器可以是比如 resnet50,然后文本编码器可以是 transformer。
训练数据是网络社交媒体上搜集的图像文本对。在训练阶段,对于一个batch 的数据,首先通过文本编码器和图像编码器,得到文本和图像的特征,接着将所有的文本和图像特征分别计算内积,就能得到一个矩阵,然后从图像的角度看,行方向就是一个分类器,从文本角度看,列方向也是一个分类器。
而由于我们已经知道一个batch中的文本和图像的匹配关系,所以目标函数就是最大化同一对图像和文本特征的内积,也就是矩阵对角线上的元素,而最小化与不相关特征的内积。文章的作者从社交媒体上搜集了有大约4亿对的数据
1.2 测试阶段
在测试阶段,可以直接将训练好的CLIP用于其他数据集而不需要finetune。和训练阶段类似,首先将需要分类的图像经过编码器得到特征,然后对于目标任务数据集的每一个标签,或者你自己定义的标签,都构造一段对应的文本,如上图中的 dog 会改造成 “A photo of a dog”,以此类推。然后经过编码器得到文本和图像特征,接着将文本特征与图像特征做内积,内积最大对应的标签就是图像的分类结果。这就完成了目标任务上的 zero-shot 分类。
1.3 优缺点
- 千万不要被它zero-shot的能力吓到,这不是真正的zero-shot!在400M个文本图像配对的训练中,模型肯定看到了大量打着相关文本标签的图像,而且图像的应用范围比ImageNet要广得多——这也是为什么方法能够在一些高级场景(如clipart)轻松超越ImageNet预训练模型。但是要说这种方法碾压了有监督方法,就有点震惊体哗众取宠的意味了。
- 另一个耐人寻味的地方,是方法同时训练了图像和文本特征(感谢评论区 @llll 的提醒,一开始我看成只训练图像了)。我直觉地认为文本预训练特征比视觉预训练特征更可靠,但是作者却放弃了OpenAI祖传的超大的文本预训练模型,令人略感意外。尤其是,NLP的预训练模型体量远超视觉预训练模型,所以固定文本模型,也许是更实用的方法?
- 最让我感兴趣的问题,是图像和文本之间的交互方式。直接用文本的encoding结果做为图像的监督信号,显然噪声太大了;能否借鉴captioning等方向的做法,允许图像和文本在encoding过程中多次交互,从而提升效果?当然,这里还是涉及到语言模型太大,无法高效训练。不过,OpenAI也可以选择暴力出奇迹,直接从头训练大规模的跨模态预训练模型。只是这样做的话,400M的数据集可能就太小了。
- 再往深了说,NLP的预训练之所以能做得好,关键是pretext任务比较好。相比起来,CV还在苦苦寻找合适的pretext任务。当前我对跨模态的最大预期,就是能够在NLP的辅助下,定义CV的pretext任务。CLIP迈出了第一步,前面的路还长得很。
1.4 官方给定的实验结果
2 利用CLIP做分类任务
2.1 识别杯子的二分类任务
import os
import clip
import torch
from torchvision.datasets import CIFAR100
from PIL import Image
img_pah = 'cup3.jpg'
classes = ['cup', 'not_cup']
#加载模型
device = "cuda" if torch.cuda.is_available() else "cpu"
model, preprocess = clip.load('ViT-B/32', device)
#准备输入集
image = Image.open(img_pah)
image_input = preprocess(image).unsqueeze(0).to(device)
text_inputs = torch.cat([clip.tokenize(f"a photo of a c") for c in classes]).to(device) #生成文字描述
#特征编码
with torch.no_grad():
image_features = model.encode_image(image_input)
text_features = model.encode_text(text_inputs)
#选取参数最高的标签
image_features /= image_features.norm(dim=-1, keepdim=True)
text_features /= text_features.norm(dim=-1, keepdim=True)
similarity = (100.0 * image_features @ text_features.T).softmax(dim=-1) #对图像描述和图像特征
values, indices = similarity[0].topk(1)
#输出结果
print("\\nTop predictions:\\n")
print('classes: score::.2f'.format(classes[indices.item()], values.item()))
针对与其他分类任务,只需要更改classes即可
2.2 人脸分类(celebface)
import os
from torch.utils.data import DataLoader
import clip
import torch
import torchvision
import time
device = "cuda" if torch.cuda.is_available() else "cpu"
def model_load(model_name):
# 加载模型
model, preprocess = clip.load(model_name, device) #ViT-B/32 RN50x16
return model, preprocess
def data_load(data_path):
#加载数据集和文字描述
celeba = torchvision.datasets.CelebA(root='CELEBA', split='test', download=True)
text_inputs = torch.cat([clip.tokenize(f"a photo of a c") for c in celeba.attr_names]).to(device)
return celeba, text_inputs
def test_model(start, end, celeba, text_inputs, model, preprocess):
#测试模型
length = end - start + 1
face_accuracy = 0
face_score = 0
for i, data in enumerate(celeba):
face_result = 0
if i < start:
continue
image, target = data
image_input = preprocess(image).unsqueeze(0).to(device)
with torch.no_grad():
image_features = model.encode_image(image_input)
text_features = model.encode_text(text_inputs)
image_features /= image_features.norm(dim=-1, keepdim=True)
text_features /= text_features.norm(dim=-1, keepdim=True)
text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)
top_score, top_label = text_probs.topk(6, dim=-1)
for k, score in zip(top_label[0], top_score[0]):
if k.item() < 40 and target[k.item()] == 1:
face_result = 1
face_score += score.item()
print('Predict right! The predicted is '.format(celeba.attr_names[k.item()]))
else:
print('Predict flase! The predicted is '.format(celeba.attr_names[k.item()]))
face_accuracy += face_result
if i == end:
break
face_score = face_score / length
face_accuracy = face_accuracy / length
return face_score, face_accuracy
def main():
start = 0
end = 1000
model_name = 'ViT-B/32' #ViT-B/32 RN50x16
data_path = 'CELEBA'
time_start = time.time()
model, preprocess = model_load(model_name)
celeba, text_inputs = data_load(data_path)
face_score, face_accuracy = test_model(start, end, celeba, text_inputs, model, preprocess)
time_end = time.time()
print('The prediction:')
print('face_accuracy: :.2f face_score: %'.format(face_accuracy, face_score*100))
print('runing time: %.4f'%(time_end - time_start))
if __name__ == '__main__':
main()
3 CLIP的再训练
from torch.utils.data import Dataset, DataLoader
import torch
import clip
from torch import nn, optim
import pandas as pd
from PIL import Image
import os
device = 'cuda' if torch.cuda.is_available() else 'cpu'
class image_caption_dataset(Dataset):
def __init__(self, df, preprocess):
self.images = df["image"]
self.caption = df["caption"]
self.preprocess = preprocess
def __len__(self):
return len(self.caption)
def __getitem__(self, idx):
images = self.preprocess(Image.open(self.images[idx]))
caption = self.caption[idx]
return images, caption
def load_data(cup_path, cupnot_path, batch_size, preprocess):
df = 'image': [], 'caption':[]
cup_list = os.listdir(cup_path)
cupnot_list = os.listdir(cupnot_path)
caption = cup_path.split('/')[-1]
for img in cup_list:
img_path = os.path.join(cup_path, img)
df['image'].append(img_path)
df['caption'].append(caption)
caption = cupnot_path.split('/')[-1]
for img in cupnot_list:
img_path = os.path.join(cupnot_path, img)
df['image'].append(img_path)
df['caption'].append(caption)
dataset = image_caption_dataset(df, preprocess)
train_dataloader = DataLoader(dataset, batch_size=batch_size)
return train_dataloader
def convert_models_to_fp32(model):
for p in model.parameters():
p.data = p.data.float()
p.grad.data = p.grad.data.float()
def load_pretrian_model(model_path):
model, preprocess = clip.load(model_path, device=device, jit=False) # 训练时 jit必须设置为false
if device == "cpu":
model.float()
else:
clip.model.convert_weights(model)
return model, preprocess
def train(epoch, batch_size, learning_rate, cup_path, cupnot_path):
# 加载模型
model, preprocess = load_pretrian_model('ViT-B/32')
#加载数据集
train_dataloader = load_data(cup_path, cupnot_path, batch_size, preprocess)
#设置参数
loss_img = nn.CrossEntropyLoss().to(device)
loss_txt = nn.CrossEntropyLoss().to(device)
optimizer = optim.Adam(model.parameters(), lr=learning_rate, betas=(0.9, 0.98), eps=1e-6, weight_decay=0.2)
for i in range(epoch):
for batch in train_dataloader:
list_image, list_txt = batch # list_images is list of image in numpy array(np.uint8), or list of PIL images
#list_image = list_image.to(device)
texts = clip.tokenize(list_txt).to(device)
images = list_image.to(device)
logits_per_image, logits_per_text = model(images, texts)
if device == "cpu":
ground_truth = torch.arange(batch_size).long().to(device)
else:
#ground_truth = torch.arange(batch_size).half().to(device)
ground_truth = torch.arange(batch_size, dtype=torch.long, device=device)
#反向传播
total_loss = (loss_img(logits_per_image, ground_truth) + loss_txt(logits_per_text, ground_truth)) / 2
optimizer.zero_grad()
total_loss.backward()
if device == "cpu":
optimizer.step()
else:
convert_models_to_fp32(model)
optimizer.step()
clip.model.convert_weights(model)
print('[%d] loss: %.3f' %(i + 1, total_loss))
torch.save(model, './model/model1.pkl')
def main():
epoch = 100
batch_size = 6
learning_rate = 5e-5
cup_path = './data/It is photo with cup'
cupnot_path = './data/It is photo without cup'
train(epoch, batch_size, learning_rate, cup_path, cupnot_path)
if __name__ == '__main__':
main()
更新工程文件:
「CLIP」https://www.aliyundrive.com/s/mM8n836Km5M 提取码: te40
点击链接保存,或者复制本段内容,打开「阿里云盘」APP ,无需下载极速在线查看,视频原画倍速播放。
以上是关于CLIP模型的使用和训练-利用CLIP实现zero-shot的分类任务的主要内容,如果未能解决你的问题,请参考以下文章
手把手写深度学习(18):finetune微调CLIP模型的原理代码调参技巧
超越CLIP的多模态模型,只需不到1%的训练数据!南加大最新研究来了