ES-模糊查询

Posted 蓝天⊙白云

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了ES-模糊查询相关的知识,希望对你有一定的参考价值。

1. 前缀搜索:prefix
概念:以xx开头的搜索,不计算相关度评分。

注意:

前缀搜索匹配的是term(精确值查找),而不是field。
前缀搜索的性能很差
前缀搜索没有缓存
前缀搜索尽可能把前缀长度设置的更长

语法:
json GET <index>/_search 

    "query": 
        "prefix": 
            "<field>": 
                "value": "<word_prefix>"
            
        
    

index_prefixes: 默认 "min_chars" : 2, "max_chars" : 5

通配符:wildcard

概念:通配符运算符是匹配一个或多个字符的占位符。例如,*通配符运算符匹配零个或多个字符。您可以将通配符运算符与其他字符结合使用以创建通配符模式。
注意:

通配符匹配的也是term,而不是field

语法:
json GET <index>/_search 

    "query": 
        "wildcard": 
            "<field>": 
                "value": "<word_with_wildcard>"
            
        
    

正则:regexp

概念:regexp查询的性能可以根据提供的正则表达式而有所不同。为了提高性能,应避免使用通配符模式,如.或 .?+未经前缀或后缀
语法:
json GET <index>/_search 

    "query": 
        "regexp": 
            "<field>": 
                "value": "<regex>",
                "flags": "ALL"
                
            
        
    

flags

ALL

启用所有可选操作符。

COMPLEMENT

启用操作符。可以使用对下面最短的模式进行否定。例如

a~bc # matches ‘adc’ and ‘aec’ but not ‘abc’

INTERVAL

启用<>操作符。可以使用<>匹配数值范围。例如

foo<1-100> # matches ‘foo1’, ‘foo2’ … ‘foo99’, ‘foo100’

foo<01-100> # matches ‘foo01’, ‘foo02’ … ‘foo99’, ‘foo100’

INTERSECTION

启用&操作符,它充当AND操作符。如果左边和右边的模式都匹配,则匹配成功。例如:

aaa.+&.+bbb # matches ‘aaabbb’

ANYSTRING

启用@操作符。您可以使用@来匹配任何整个字符串。 您可以将@操作符与&和~操作符组合起来,创建一个“everything except”逻辑。例如:

@&~(abc.+) # matches everything except terms beginning with ‘abc’

2. 模糊查询:fuzzy
混淆字符 (box → fox) 缺少字符 (black → lack)

多出字符 (sic → sick) 颠倒次序 (act → cat)

语法
json GET <index>/_search 

    "query": 
        "fuzzy": 
            "<field>": 
                "value": "<keyword>"
            
        
    

参数:

value:(必须,关键词)

fuzziness:编辑距离,(0,1,2)并非越大越好,召回率高但结果不准确

  1. 两段文本之间的Damerau-Levenshtein距离是使一个字符串与另一个字符串匹配所需的插入、删除、替换和调换的数量

  2. 距离公式:Levenshtein是lucene的,es改进版:Damerau-Levenshtein,

axe=>aex Levenshtein=2 Damerau-Levenshtein=1

transpositions:(可选,布尔值)指示编辑是否包括两个相邻字符的变位(ab→ba)。默认为true

3. 短语前缀:matchphraseprefix

match_phrase:

match_phrase会分词
被检索字段必须包含match_phrase中的所有词项并且顺序必须是相同的
被检索字段包含的match_phrase中的词项之间不能有其他词项

概念:

​ matchphraseprefix与match_phrase相同,但是它多了一个特性,就是它允许在文本的最后一个词项(term)上的前缀匹配,如果 是一个单词,比如a,它会匹配文档字段所有以a开头的文档,如果是一个短语,比如 “this is ma” ,他会先在倒排索引中做以ma做前缀搜索,然后在匹配到的doc中做matchphrase查询,(网上有的说是先matchphrase,然后再进行前缀搜索, 是不对的)

参数

analyzer 指定何种分析器来对该短语进行分词处理
max_expansions 限制匹配的最大词项
boost 用于设置该查询的权重
slop 允许短语间的词项(term)间隔:slop 参数告诉 match_phrase 查询词条相隔多远时仍然能将文档视为匹配 什么是相隔多远? 意思是说为了让查询和文档匹配你需要移动词条多少次?

原理解析:https://www.elastic.co/cn/blog/found-fuzzy-search#performance-considerations

N-gram和edge ngram

tokenizer
json GET _analyze 

    "tokenizer": "ngram",
    "text": "reba always loves me"

token filter
json GET _analyze 

    "tokenizer": "ik_max_word",
    "filter": [
        "ngram"
    ],
    "text": "reba always loves me"

min_gram:创建索引所拆分字符的最小阈值
max_gram:创建索引所拆分字符的最大阈值
ngram:从每一个字符开始,按照步长,进行分词,适合前缀中缀检索
edge_ngram:从第一个字符开始,按照步长,进行分词,适合前缀匹配场景

以上是关于ES-模糊查询的主要内容,如果未能解决你的问题,请参考以下文章

ES实现模糊搜索

Elasticsearch-jdbc批量同步mysql数据失败

ElasticSearch实现分词模糊查询

java使用elasticsearch进行模糊查询

Elasticsearch 聚合功能

ElasticSearch-搜索查询