[ 注意力机制 ] 经典网络模型1——SENet 详解与复现

Posted Horizon Max

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[ 注意力机制 ] 经典网络模型1——SENet 详解与复现相关的知识,希望对你有一定的参考价值。


🤵 AuthorHorizon Max

编程技巧篇各种操作小结

🎇 机器视觉篇会变魔术 OpenCV

💥 深度学习篇简单入门 PyTorch

🏆 神经网络篇经典网络模型

💻 算法篇再忙也别忘了 LeetCode


[ 注意力机制 ] 经典网络模型1——SENet 详解与复现

🚀 Squeeze-and-Excitation Networks

Squeeze :挤压     Excitation :激励 ;

Squeeze-and-Excitation Networks 简称 SENet ,由 Momenta 和 牛津大学 的Jie Hu等人 提出的一种新的网络结构;

目标是通过建模 卷积特征通道之间的相互依赖关系 来提高网络的表示能力;

在2017年最后一届 ImageNet 挑战赛(ILSVRC) classification 任务中获得 冠军,将错误率降低到 2.251% ;

🔗 论文地址:Squeeze-and-Excitation Networks


🚀 SENet 详解

🎨 Squeeze-and-Excitation block

Squeeze-and-Excitation block

对于任意给定的变换: Ftr :X → U ,其中 X ∈ R H’xW’xC’ , U ∈ R HxWxCFtr 用作一个卷积算子 ;


🚩 Squeeze: Global Information Embedding

挤压:全局信息嵌入

(1)Squeeze :特征U通过 squeeze 压缩操作,将跨空间维度H × W的特征映射进行聚合,生成一个通道描述符,HxWxC → 1x1xC
将 全局空间信息 压缩到上述 通道描述符 中,使来这些 通道描述符 可以被 其输入的层 利用,这里采用的是 global average pooling

🚩 Excitation: Adaptive Recalibration

激励:自适应调整

(2)Excitation :每个通道通过一个 基于通道依赖 的自选门机制 来学习特定样本的激活,使其学会使用全局信息,有选择地强调信息特征,并抑制不太有用的特征,这里采用的是 sigmoid ,并在中间嵌入了 ReLU 函数用于限制模型的复杂性和帮助训练 ;

通过 两个全连接层(FC) 构成的瓶颈来参数化门控机制,即 W1 用于降低维度,W2 用于维度递增 ;

(3)Reweight :将 Excitation 输出的权重通过乘法逐通道加权到输入特征上;


总的来说 SE Block 就是在 Layer 的输入和输出之间添加结构: global average pooling - FC - ReLU - FC- sigmoid

SE block 的灵活性意味着它可以直接应用于标准卷积以外的转换,通过将 SE block 集成到任何复杂模型当中来开发SENet;


🚩 在非残差网络中的应用

应用于 非残差网络 Inception network 当中,形成 SE-Inception module

非残差网络结构框图(Inception block)

Scale : 改变(文字、图片)的尺寸大小

🚩 在残差网络中的应用

应用于 残差网络 Residual network 当中,形成 SE-ResNet module


残差网络结构框图(Residual Block)

论文中对 SE block 的应用用于实验对比:

SE-ResNet-50 网络的准确性优于 ResNet-50 和模型深化版的 ResNet101 网络 ;
对于224 × 224像素的输入图像,ResNet-50 需要164 ms,而 SE-ResNet-50 需要167 ms ;


🚀 SENet 复现

这里实现的是 SE-ResNet 系列网络 :

# Here is the code :

import torch
import torch.nn as nn
import torch.nn.functional as F
from torchinfo import summary


class SE_Block(nn.Module):                         # Squeeze-and-Excitation block
    def __init__(self, in_planes):
        super(SE_Block, self).__init__()
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.conv1 = nn.Conv2d(in_planes, in_planes // 16, kernel_size=1)
        self.relu = nn.ReLU()
        self.conv2 = nn.Conv2d(in_planes // 16, in_planes, kernel_size=1)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        x = self.avgpool(x)
        x = self.conv1(x)
        x = self.relu(x)
        x = self.conv2(x)
        out = self.sigmoid(x)
        return out


class BasicBlock(nn.Module):      # 左侧的 residual block 结构(18-layer、34-layer)
    expansion = 1

    def __init__(self, in_planes, planes, stride=1):      # 两层卷积 Conv2d + Shutcuts
        super(BasicBlock, self).__init__()
        self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3,
                               stride=stride, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3,
                               stride=1, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)

        self.SE = SE_Block(planes)           # Squeeze-and-Excitation block

        self.shortcut = nn.Sequential()
        if stride != 1 or in_planes != self.expansion*planes:      # Shutcuts用于构建 Conv Block 和 Identity Block
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_planes, self.expansion*planes,
                          kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(self.expansion*planes)
            )

    def forward(self, x):
        out = F.relu(self.bn1(self.conv1(x)))
        out = self.bn2(self.conv2(out))
        SE_out = self.SE(out)
        out = out * SE_out
        out += self.shortcut(x)
        out = F.relu(out)
        return out


class Bottleneck(nn.Module):      # 右侧的 residual block 结构(50-layer、101-layer、152-layer)
    expansion = 4

    def __init__(self, in_planes, planes, stride=1):      # 三层卷积 Conv2d + Shutcuts
        super(Bottleneck, self).__init__()
        self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3,
                               stride=stride, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv3 = nn.Conv2d(planes, self.expansion*planes,
                               kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(self.expansion*planes)

        self.SE = SE_Block(self.expansion*planes)           # Squeeze-and-Excitation block

        self.shortcut = nn.Sequential()
        if stride != 1 or in_planes != self.expansion*planes:      # Shutcuts用于构建 Conv Block 和 Identity Block
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_planes, self.expansion*planes,
                          kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(self.expansion*planes)
            )

    def forward(self, x):
        out = F.relu(self.bn1(self.conv1(x)))
        out = F.relu(self.bn2(self.conv2(out)))
        out = self.bn3(self.conv3(out))
        SE_out = self.SE(out)
        out = out * SE_out
        out += self.shortcut(x)
        out = F.relu(out)
        return out


class SE_ResNet(nn.Module):
    def __init__(self, block, num_blocks, num_classes=1000):
        super(SE_ResNet, self).__init__()
        self.in_planes = 64

        self.conv1 = nn.Conv2d(3, 64, kernel_size=3,
                               stride=1, padding=1, bias=False)                  # conv1
        self.bn1 = nn.BatchNorm2d(64)
        self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)       # conv2_x
        self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)      # conv3_x
        self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)      # conv4_x
        self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)      # conv5_x
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.linear = nn.Linear(512 * block.expansion, num_classes)

    def _make_layer(self, block, planes, num_blocks, stride):
        strides = [stride] + [1]*(num_blocks-1)
        layers = []
        for stride in strides:
            layers.append(block(self.in_planes, planes, stride))
            self.in_planes = planes * block.expansion
        return nn.Sequential(*layers)

    def forward(self, x):
        x = F.relu(self.bn1(self.conv1(x)))
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
        x = self.avgpool(x)
        x = torch.flatten(x, 1)
        out = self.linear(x)
        return out


def SE_ResNet18():
    return SE_ResNet(BasicBlock, [2, 2, 2, 2])


def SE_ResNet34():
    return SE_ResNet(BasicBlock, [3, 4, 6, 3])


def SE_ResNet50():
    return SE_ResNet(Bottleneck, [3, 4, 6, 3])


def SE_ResNet101():
    return SE_ResNet(Bottleneck, [3, 4, 23, 3])


def SE_ResNet152():
    return SE_ResNet(Bottleneck, [3, 8, 36, 3])


def test():
    net = SE_ResNet50()
    y = net(torch.randn(1, 3, 224, 224))
    print(y.size())
    summary(net, (1, 3, 224, 224))


if __name__ == '__main__':
    test()

输出结果:

torch.Size([1, 1000])
===============================================================================================
Layer (type:depth-idx)                        Output Shape              Param #
===============================================================================================
SE_ResNet                                     --                        --
├─Conv2d: 1-1                                 [1, 64, 224, 224]         1,728
├─BatchNorm2d: 1-2                            [1, 64, 224, 224]         128
├─Sequential: 1-3                             [1, 256, 224, 224]        --
│    └─Bottleneck: 2-1                        [1, 256, 224, 224]        --
│    │    └─Conv2d: 3-1                       [1, 64, 224, 224]         4,096
│    │    └─BatchNorm2d: 3-2                  [1, 64, 224, 224]         128
│    │    └─Conv2d: 3-3                       [1, 64, 224, 224]         36,864
│    │    └─BatchNorm2d: 3-4                  [1, 64, 224, 224]         128
│    │    └─Conv2d: 3-5                       [1, 256, 224, 224]        16,384
│    │    └─BatchNorm2d: 3-6                  [1, 256, 224, 224]        512
│    │    └─SE_Block: 3-7                     [1, 256, 1, 1]            8,464
│    │    └─Sequential: 3-8                   [1, 256, 224, 224]        16,896
│    └─Bottleneck: 2-2                        [1, 256, 224, 224]        --
│    │    └─Conv2d: 3-9                       [1, 64, 224, 224]         16,384
│    │    └─BatchNorm2d: 3-10                 [1, 64, 224, 224]         128
│    │    └─Conv2d: 3-11                      [1, 64, 224, 224]         36,864
│    │    └─BatchNorm2d: 3-12                 [1, 64, 224, 224]         128
│    │    └─Conv2d: 3-13                      [1, 256, 224, 224]        16,384
│    │    └─BatchNorm2d: 3-14                 [1, 256, 224, 224]        512
│    │    └─SE_Block: 3-15                    [1, 256, 1, 1]            8,464
│    │    └─Sequential: 3-16                  [1, 256, 224, 224]        --
│    └─Bottleneck: 2-3                        [1, 256, 224, 224]        --
│    │    └─Conv2d: 3-17                      [1, 64, 224, 224]         16,384
│    │    └─BatchNorm2d: 3-18                 [1, 64, 224, 224]         128
│    │    └─Conv2d: 3-19                      [1, 64, 224, 224]         36,864
│    │    └─BatchNorm2d: 3-20                 [1, 64, 224, 224]         128
│    │    └─Conv2d: 3-21                      [1, 256, 224, 224<

以上是关于[ 注意力机制 ] 经典网络模型1——SENet 详解与复现的主要内容,如果未能解决你的问题,请参考以下文章

常用的即插即用的注意力机制模块(SECBAM)

[ 注意力机制 ] 经典网络模型2——CBAM 详解与复现

深度学习理论篇之 ( 十八) -- 注意力机制之SENet

SE注意力机制

Selective Kernel Networks(Upgraded version of SENet)

目标检测yolov5改进系列:主干网络中添加SE注意力机制网络