[ 注意力机制 ] 经典网络模型1——SENet 详解与复现
Posted Horizon Max
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[ 注意力机制 ] 经典网络模型1——SENet 详解与复现相关的知识,希望对你有一定的参考价值。
🤵 Author :Horizon Max
✨ 编程技巧篇:各种操作小结
🎇 机器视觉篇:会变魔术 OpenCV
💥 深度学习篇:简单入门 PyTorch
🏆 神经网络篇:经典网络模型
💻 算法篇:再忙也别忘了 LeetCode
[ 注意力机制 ] 经典网络模型1——SENet 详解与复现
🚀 Squeeze-and-Excitation Networks
Squeeze
:挤压 Excitation
:激励 ;
Squeeze-and-Excitation Networks 简称 SENet
,由 Momenta 和 牛津大学 的Jie Hu等人 提出的一种新的网络结构;
目标是通过建模 卷积特征通道之间的相互依赖关系 来提高网络的表示能力;
在2017年最后一届 ImageNet 挑战赛(ILSVRC) classification 任务中获得 冠军,将错误率降低到 2.251% ;
🔗 论文地址:Squeeze-and-Excitation Networks
🚀 SENet 详解
🎨 Squeeze-and-Excitation block
对于任意给定的变换: Ftr :X → U ,其中 X ∈ R H’xW’xC’ , U ∈ R HxWxC ,Ftr 用作一个卷积算子 ;
🚩 Squeeze: Global Information Embedding
挤压:全局信息嵌入
(1)Squeeze
:特征U通过 squeeze 压缩操作,将跨空间维度H × W的特征映射进行聚合,生成一个通道描述符,HxWxC → 1x1xC
;
将 全局空间信息 压缩到上述 通道描述符 中,使来这些 通道描述符 可以被 其输入的层 利用,这里采用的是 global average pooling
;
🚩 Excitation: Adaptive Recalibration
激励:自适应调整
(2)Excitation
:每个通道通过一个 基于通道依赖 的自选门机制 来学习特定样本的激活,使其学会使用全局信息,有选择地强调信息特征,并抑制不太有用的特征,这里采用的是 sigmoid
,并在中间嵌入了 ReLU
函数用于限制模型的复杂性和帮助训练 ;
通过 两个全连接层(FC)
构成的瓶颈来参数化门控机制,即 W1
用于降低维度,W2
用于维度递增 ;
(3)Reweight
:将 Excitation 输出的权重通过乘法逐通道加权到输入特征上;
总的来说 SE Block
就是在 Layer 的输入和输出之间添加结构: global average pooling
- FC
- ReLU
- FC
- sigmoid
;
SE block
的灵活性意味着它可以直接应用于标准卷积以外的转换,通过将 SE block 集成到任何复杂模型当中来开发SENet;
🚩 在非残差网络中的应用
应用于 非残差网络 Inception network 当中,形成 SE-Inception module
;
Scale
: 改变(文字、图片)的尺寸大小
🚩 在残差网络中的应用
应用于 残差网络 Residual network 当中,形成 SE-ResNet module
;
论文中对 SE block 的应用用于实验对比:
SE-ResNet-50 网络的准确性优于 ResNet-50 和模型深化版的 ResNet101 网络 ;
对于224 × 224像素的输入图像,ResNet-50 需要164 ms,而 SE-ResNet-50 需要167 ms ;
🚀 SENet 复现
这里实现的是 SE-ResNet
系列网络 :
# Here is the code :
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchinfo import summary
class SE_Block(nn.Module): # Squeeze-and-Excitation block
def __init__(self, in_planes):
super(SE_Block, self).__init__()
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.conv1 = nn.Conv2d(in_planes, in_planes // 16, kernel_size=1)
self.relu = nn.ReLU()
self.conv2 = nn.Conv2d(in_planes // 16, in_planes, kernel_size=1)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
x = self.avgpool(x)
x = self.conv1(x)
x = self.relu(x)
x = self.conv2(x)
out = self.sigmoid(x)
return out
class BasicBlock(nn.Module): # 左侧的 residual block 结构(18-layer、34-layer)
expansion = 1
def __init__(self, in_planes, planes, stride=1): # 两层卷积 Conv2d + Shutcuts
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3,
stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3,
stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.SE = SE_Block(planes) # Squeeze-and-Excitation block
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion*planes: # Shutcuts用于构建 Conv Block 和 Identity Block
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion*planes,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion*planes)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
SE_out = self.SE(out)
out = out * SE_out
out += self.shortcut(x)
out = F.relu(out)
return out
class Bottleneck(nn.Module): # 右侧的 residual block 结构(50-layer、101-layer、152-layer)
expansion = 4
def __init__(self, in_planes, planes, stride=1): # 三层卷积 Conv2d + Shutcuts
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3,
stride=stride, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, self.expansion*planes,
kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(self.expansion*planes)
self.SE = SE_Block(self.expansion*planes) # Squeeze-and-Excitation block
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion*planes: # Shutcuts用于构建 Conv Block 和 Identity Block
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion*planes,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion*planes)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = F.relu(self.bn2(self.conv2(out)))
out = self.bn3(self.conv3(out))
SE_out = self.SE(out)
out = out * SE_out
out += self.shortcut(x)
out = F.relu(out)
return out
class SE_ResNet(nn.Module):
def __init__(self, block, num_blocks, num_classes=1000):
super(SE_ResNet, self).__init__()
self.in_planes = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=3,
stride=1, padding=1, bias=False) # conv1
self.bn1 = nn.BatchNorm2d(64)
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1) # conv2_x
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2) # conv3_x
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2) # conv4_x
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2) # conv5_x
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.linear = nn.Linear(512 * block.expansion, num_classes)
def _make_layer(self, block, planes, num_blocks, stride):
strides = [stride] + [1]*(num_blocks-1)
layers = []
for stride in strides:
layers.append(block(self.in_planes, planes, stride))
self.in_planes = planes * block.expansion
return nn.Sequential(*layers)
def forward(self, x):
x = F.relu(self.bn1(self.conv1(x)))
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
out = self.linear(x)
return out
def SE_ResNet18():
return SE_ResNet(BasicBlock, [2, 2, 2, 2])
def SE_ResNet34():
return SE_ResNet(BasicBlock, [3, 4, 6, 3])
def SE_ResNet50():
return SE_ResNet(Bottleneck, [3, 4, 6, 3])
def SE_ResNet101():
return SE_ResNet(Bottleneck, [3, 4, 23, 3])
def SE_ResNet152():
return SE_ResNet(Bottleneck, [3, 8, 36, 3])
def test():
net = SE_ResNet50()
y = net(torch.randn(1, 3, 224, 224))
print(y.size())
summary(net, (1, 3, 224, 224))
if __name__ == '__main__':
test()
输出结果:
torch.Size([1, 1000])
===============================================================================================
Layer (type:depth-idx) Output Shape Param #
===============================================================================================
SE_ResNet -- --
├─Conv2d: 1-1 [1, 64, 224, 224] 1,728
├─BatchNorm2d: 1-2 [1, 64, 224, 224] 128
├─Sequential: 1-3 [1, 256, 224, 224] --
│ └─Bottleneck: 2-1 [1, 256, 224, 224] --
│ │ └─Conv2d: 3-1 [1, 64, 224, 224] 4,096
│ │ └─BatchNorm2d: 3-2 [1, 64, 224, 224] 128
│ │ └─Conv2d: 3-3 [1, 64, 224, 224] 36,864
│ │ └─BatchNorm2d: 3-4 [1, 64, 224, 224] 128
│ │ └─Conv2d: 3-5 [1, 256, 224, 224] 16,384
│ │ └─BatchNorm2d: 3-6 [1, 256, 224, 224] 512
│ │ └─SE_Block: 3-7 [1, 256, 1, 1] 8,464
│ │ └─Sequential: 3-8 [1, 256, 224, 224] 16,896
│ └─Bottleneck: 2-2 [1, 256, 224, 224] --
│ │ └─Conv2d: 3-9 [1, 64, 224, 224] 16,384
│ │ └─BatchNorm2d: 3-10 [1, 64, 224, 224] 128
│ │ └─Conv2d: 3-11 [1, 64, 224, 224] 36,864
│ │ └─BatchNorm2d: 3-12 [1, 64, 224, 224] 128
│ │ └─Conv2d: 3-13 [1, 256, 224, 224] 16,384
│ │ └─BatchNorm2d: 3-14 [1, 256, 224, 224] 512
│ │ └─SE_Block: 3-15 [1, 256, 1, 1] 8,464
│ │ └─Sequential: 3-16 [1, 256, 224, 224] --
│ └─Bottleneck: 2-3 [1, 256, 224, 224] --
│ │ └─Conv2d: 3-17 [1, 64, 224, 224] 16,384
│ │ └─BatchNorm2d: 3-18 [1, 64, 224, 224] 128
│ │ └─Conv2d: 3-19 [1, 64, 224, 224] 36,864
│ │ └─BatchNorm2d: 3-20 [1, 64, 224, 224] 128
│ │ └─Conv2d: 3-21 [1, 256, 224, 224<以上是关于[ 注意力机制 ] 经典网络模型1——SENet 详解与复现的主要内容,如果未能解决你的问题,请参考以下文章