caffe学习--cifar10学习-ubuntu16.04-gtx650tiboost--1g--01

Posted leoking01

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了caffe学习--cifar10学习-ubuntu16.04-gtx650tiboost--1g--01相关的知识,希望对你有一定的参考价值。

caffe学习--cifar10学习-ubuntu16.04-gtx650tiboost--1g--02

 

caffe train  -solver  examples/cifar10/cifar10_quick_solver.prototxt 


I1025 09:52:16.952167  7453 sgd_solver.cpp:105] Iteration 3700, lr = 0.001
I1025 09:52:18.843194  7453 solver.cpp:218] Iteration 3800 (52.8951 iter/s, 1.89054s/100 iters), loss = 0.593796
I1025 09:52:18.843243  7453 solver.cpp:237]     Train net output #0: loss = 0.593796 (* 1 = 0.593796 loss)
I1025 09:52:18.843261  7453 sgd_solver.cpp:105] Iteration 3800, lr = 0.001
I1025 09:52:20.776065  7453 solver.cpp:218] Iteration 3900 (51.7515 iter/s, 1.93231s/100 iters), loss = 0.713602
I1025 09:52:20.776106  7453 solver.cpp:237]     Train net output #0: loss = 0.713602 (* 1 = 0.713602 loss)
I1025 09:52:20.776114  7453 sgd_solver.cpp:105] Iteration 3900, lr = 0.001
I1025 09:52:22.677291  7458 data_layer.cpp:73] Restarting data prefetching from start.
I1025 09:52:22.749538  7453 solver.cpp:447] Snapshotting to binary proto file examples/cifar10/cifar10_quick_iter_4000.caffemodel
I1025 09:52:22.766818  7453 sgd_solver.cpp:273] Snapshotting solver state to binary proto file examples/cifar10/cifar10_quick_iter_4000.solverstate
I1025 09:52:22.775292  7453 solver.cpp:310] Iteration 4000, loss = 0.643869
I1025 09:52:22.775322  7453 solver.cpp:330] Iteration 4000, Testing net (#0)
I1025 09:52:23.483098  7460 data_layer.cpp:73] Restarting data prefetching from start.
I1025 09:52:23.508436  7453 solver.cpp:397]     Test net output #0: accuracy = 0.7157
I1025 09:52:23.508478  7453 solver.cpp:397]     Test net output #1: loss = 0.847997 (* 1 = 0.847997 loss)
I1025 09:52:23.508484  7453 solver.cpp:315] Optimization Done.
I1025 09:52:23.508487  7453 caffe.cpp:259] Optimization Done.

 

caffe time -model examples/mnist/lenet_train_test.prototxt -iterations 10

I1025 10:19:02.415710 8451 caffe.cpp:352] Use CPU.
I1025 10:19:02.623905 8451 net.cpp:294] The NetState phase (0) differed from the phase (1) specified by a rule in layer mnist
I1025 10:19:02.623939 8451 net.cpp:294] The NetState phase (0) differed from the phase (1) specified by a rule in layer accuracy
I1025 10:19:02.624037 8451 net.cpp:51] Initializing net from parameters:
name: "LeNet"
state {
phase: TRAIN
level: 0
stage: ""
}

... ...  ...  ...
I1025
10:19:02.848223 8451 net.cpp:198] ip1 needs backward computation. I1025 10:19:02.848227 8451 net.cpp:198] pool2 needs backward computation. I1025 10:19:02.848230 8451 net.cpp:198] conv2 needs backward computation. I1025 10:19:02.848234 8451 net.cpp:198] pool1 needs backward computation. I1025 10:19:02.848237 8451 net.cpp:198] conv1 needs backward computation. I1025 10:19:02.848242 8451 net.cpp:200] mnist does not need backward computation. I1025 10:19:02.848245 8451 net.cpp:242] This network produces output loss I1025 10:19:02.848253 8451 net.cpp:255] Network initialization done. I1025 10:19:02.848287 8451 caffe.cpp:360] Performing Forward I1025 10:19:02.879693 8451 caffe.cpp:365] Initial loss: 2.29607 I1025 10:19:02.879722 8451 caffe.cpp:366] Performing Backward I1025 10:19:02.923279 8451 caffe.cpp:374] *** Benchmark begins *** I1025 10:19:02.923300 8451 caffe.cpp:375] Testing for 10 iterations. I1025 10:19:02.994730 8451 caffe.cpp:403] Iteration: 1 forward-backward time: 71 ms. I1025 10:19:03.067307 8451 caffe.cpp:403] Iteration: 2 forward-backward time: 72 ms. I1025 10:19:03.139232 8451 caffe.cpp:403] Iteration: 3 forward-backward time: 71 ms. I1025 10:19:03.211033 8451 caffe.cpp:403] Iteration: 4 forward-backward time: 71 ms. I1025 10:19:03.283150 8451 caffe.cpp:403] Iteration: 5 forward-backward time: 72 ms. I1025 10:19:03.355051 8451 caffe.cpp:403] Iteration: 6 forward-backward time: 71 ms. I1025 10:19:03.430778 8451 caffe.cpp:403] Iteration: 7 forward-backward time: 75 ms. I1025 10:19:03.503176 8451 caffe.cpp:403] Iteration: 8 forward-backward time: 72 ms. I1025 10:19:03.575840 8451 caffe.cpp:403] Iteration: 9 forward-backward time: 72 ms. I1025 10:19:03.649318 8451 caffe.cpp:403] Iteration: 10 forward-backward time: 73 ms. I1025 10:19:03.649350 8451 caffe.cpp:406] Average time per layer: I1025 10:19:03.649353 8451 caffe.cpp:409] mnist forward: 0.0106 ms. I1025 10:19:03.649368 8451 caffe.cpp:412] mnist backward: 0.001 ms. I1025 10:19:03.649374 8451 caffe.cpp:409] conv1 forward: 7.967 ms. I1025 10:19:03.649387 8451 caffe.cpp:412] conv1 backward: 7.9797 ms. I1025 10:19:03.649391 8451 caffe.cpp:409] pool1 forward: 3.8953 ms. I1025 10:19:03.649394 8451 caffe.cpp:412] pool1 backward: 0.7797 ms. I1025 10:19:03.649397 8451 caffe.cpp:409] conv2 forward: 13.4244 ms. I1025 10:19:03.649401 8451 caffe.cpp:412] conv2 backward: 26.7948 ms. I1025 10:19:03.649405 8451 caffe.cpp:409] pool2 forward: 2.1919 ms. I1025 10:19:03.649410 8451 caffe.cpp:412] pool2 backward: 0.9304 ms. I1025 10:19:03.649412 8451 caffe.cpp:409] ip1 forward: 2.756 ms. I1025 10:19:03.649415 8451 caffe.cpp:412] ip1 backward: 5.2499 ms. I1025 10:19:03.649420 8451 caffe.cpp:409] relu1 forward: 0.0344 ms. I1025 10:19:03.649422 8451 caffe.cpp:412] relu1 backward: 0.0428 ms. I1025 10:19:03.649426 8451 caffe.cpp:409] ip2 forward: 0.1709 ms. I1025 10:19:03.649430 8451 caffe.cpp:412] ip2 backward: 0.2136 ms. I1025 10:19:03.649432 8451 caffe.cpp:409] loss forward: 0.0642 ms. I1025 10:19:03.649435 8451 caffe.cpp:412] loss backward: 0.0026 ms. I1025 10:19:03.649441 8451 caffe.cpp:417] Average Forward pass: 30.5448 ms. I1025 10:19:03.649446 8451 caffe.cpp:419] Average Backward pass: 42.0169 ms. I1025 10:19:03.649448 8451 caffe.cpp:421] Average Forward-Backward: 72.6 ms. I1025 10:19:03.649452 8451 caffe.cpp:423] Total Time: 726 ms. I1025 10:19:03.649456 8451 caffe.cpp:424] *** Benchmark ends ***

 

caffe time -model examples/mnist/lenet_train_test.prototxt -gpu 0

I1025 10:20:00.676383 8487 caffe.cpp:348] Use GPU with device ID 0
I1025 10:20:00.889961 8487 net.cpp:294] The NetState phase (0) differed from the phase (1) specified by a rule in layer mnist
I1025 10:20:00.889991 8487 net.cpp:294] The NetState phase (0) differed from the phase (1) specified by a rule in layer accuracy
I1025 10:20:00.890086 8487 net.cpp:51] Initializing net from parameters:
name: "LeNet"
state {
phase: TRAIN
level: 0
stage: ""
}

... ...  ...  ... 
I1025
10:20:01.122086 8487 caffe.cpp:360] Performing Forward I1025 10:20:01.124756 8487 caffe.cpp:365] Initial loss: 2.34191 I1025 10:20:01.124771 8487 caffe.cpp:366] Performing Backward I1025 10:20:01.125615 8487 caffe.cpp:374] *** Benchmark begins *** I1025 10:20:01.125625 8487 caffe.cpp:375] Testing for 50 iterations. I1025 10:20:01.138612 8487 caffe.cpp:403] Iteration: 1 forward-backward time: 8.47408 ms. I1025 10:20:01.146049 8487 caffe.cpp:403] Iteration: 2 forward-backward time: 7.38394 ms. I1025 10:20:01.155109 8487 caffe.cpp:403] Iteration: 3 forward-backward time: 9.0225 ms. I1025 10:20:01.161478 8487 caffe.cpp:403] Iteration: 4 forward-backward time: 6.32 ms. I1025 10:20:01.170373 8487 caffe.cpp:403] Iteration: 5 forward-backward time: 8.86355 ms. I1025 10:20:01.177851 8487 caffe.cpp:403] Iteration: 6 forward-backward time: 7.41622 ms. I1025 10:20:01.187093 8487 caffe.cpp:403] Iteration: 7 forward-backward time: 9.20099 ms. I1025 10:20:01.193529 8487 caffe.cpp:403] Iteration: 8 forward-backward time: 6.38976 ms. I1025 10:20:01.200045 8487 caffe.cpp:403] Iteration: 9 forward-backward time: 6.47888 ms. I1025 10:20:01.210321 8487 caffe.cpp:403] Iteration: 10 forward-backward time: 10.2353 ms. I1025 10:20:01.217547 8487 caffe.cpp:403] Iteration: 11 forward-backward time: 7.18 ms. I1025 10:20:01.225344 8487 caffe.cpp:403] Iteration: 12 forward-backward time: 7.73363 ms. I1025 10:20:01.232453 8487 caffe.cpp:403] Iteration: 13 forward-backward time: 7.06461 ms. I1025 10:20:01.240022 8487 caffe.cpp:403] Iteration: 14 forward-backward time: 7.532 ms. I1025 10:20:01.249349 8487 caffe.cpp:403] Iteration: 15 forward-backward time: 9.27904 ms. I1025 10:20:01.249379 8487 blocking_queue.cpp:49] Waiting for data I1025 10:20:01.268914 8487 caffe.cpp:403] Iteration: 16 forward-backward time: 19.5232 ms. I1025 10:20:01.279377 8487 caffe.cpp:403] Iteration: 17 forward-backward time: 10.4125 ms. I1025 10:20:01.286734 8487 caffe.cpp:403] Iteration: 18 forward-backward time: 7.30182 ms. I1025 10:20:01.294451 8487 caffe.cpp:403] Iteration: 19 forward-backward time: 7.67226 ms. I1025 10:20:01.302402 8487 caffe.cpp:403] Iteration: 20 forward-backward time: 7.89741 ms. I1025 10:20:01.310400 8487 caffe.cpp:403] Iteration: 21 forward-backward time: 7.96928 ms. I1025 10:20:01.317606 8487 caffe.cpp:403] Iteration: 22 forward-backward time: 7.16723 ms. I1025 10:20:01.323557 8487 caffe.cpp:403] Iteration: 23 forward-backward time: 5.92131 ms. I1025 10:20:01.330713 8487 caffe.cpp:403] Iteration: 24 forward-backward time: 7.10467 ms. I1025 10:20:01.336655 8487 caffe.cpp:403] Iteration: 25 forward-backward time: 5.90749 ms. I1025 10:20:01.345613 8487 caffe.cpp:403] Iteration: 26 forward-backward time: 8.92973 ms. I1025 10:20:01.351608 8487 caffe.cpp:403] Iteration: 27 forward-backward time: 5.95821 ms. I1025 10:20:01.357544 8487 caffe.cpp:403] Iteration: 28 forward-backward time: 5.90122 ms. I1025 10:20:01.366344 8487 caffe.cpp:403] Iteration: 29 forward-backward time: 8.72832 ms. I1025 10:20:01.372421 8487 caffe.cpp:403] Iteration: 30 forward-backward time: 6.03226 ms. I1025 10:20:01.382807 8487 caffe.cpp:403] Iteration: 31 forward-backward time: 10.3558 ms. I1025 10:20:01.388767 8487 caffe.cpp:403] Iteration: 32 forward-backward time: 5.92176 ms. I1025 10:20:01.397477 8487 caffe.cpp:403] Iteration: 33 forward-backward time: 8.67101 ms. I1025 10:20:01.403537 8487 caffe.cpp:403] Iteration: 34 forward-backward time: 6.00432 ms. I1025 10:20:01.412868 8487 caffe.cpp:403] Iteration: 35 forward-backward time: 9.30355 ms. I1025 10:20:01.419735 8487 caffe.cpp:403] Iteration: 36 forward-backward time: 6.81789 ms. I1025 10:20:01.426568 8487 caffe.cpp:403] Iteration: 37 forward-backward time: 6.79034 ms. I1025 10:20:01.434139 8487 caffe.cpp:403] Iteration: 38 forward-backward time: 7.51936 ms. I1025 10:20:01.441957 8487 caffe.cpp:403] Iteration: 39 forward-backward time: 7.77027 ms. I1025 10:20:01.449676 8487 caffe.cpp:403] Iteration: 40 forward-backward time: 7.67699 ms. I1025 10:20:01.455268 8487 caffe.cpp:403] Iteration: 41 forward-backward time: 5.55248 ms. I1025 10:20:01.463119 8487 caffe.cpp:403] Iteration: 42 forward-backward time: 7.81456 ms. I1025 10:20:01.469161 8487 caffe.cpp:403] Iteration: 43 forward-backward time: 6.00304 ms. I1025 10:20:01.477457 8487 caffe.cpp:403] Iteration: 44 forward-backward time: 8.24778 ms. I1025 10:20:01.483078 8487 caffe.cpp:403] Iteration: 45 forward-backward time: 5.57971 ms. I1025 10:20:01.489542 8487 caffe.cpp:403] Iteration: 46 forward-backward time: 6.42477 ms. I1025 10:20:01.497421 8487 caffe.cpp:403] Iteration: 47 forward-backward time: 7.19514 ms. I1025 10:20:01.503559 8487 caffe.cpp:403] Iteration: 48 forward-backward time: 6.0952 ms. I1025 10:20:01.512117 8487 caffe.cpp:403] Iteration: 49 forward-backward time: 8.49587 ms. I1025 10:20:01.517725 8487 caffe.cpp:403] Iteration: 50 forward-backward time: 5.55443 ms. I1025 10:20:01.517742 8487 caffe.cpp:406] Average time per layer: I1025 10:20:01.517746 8487 caffe.cpp:409] mnist forward: 0.251048 ms. I1025 10:20:01.517750 8487 caffe.cpp:412] mnist backward: 0.00134592 ms. I1025 10:20:01.517755 8487 caffe.cpp:409] conv1 forward: 0.49879 ms. I1025 10:20:01.517771 8487 caffe.cpp:412] conv1 backward: 0.647739 ms. I1025 10:20:01.517773 8487 caffe.cpp:409] pool1 forward: 0.165693 ms. I1025 10:20:01.517779 8487 caffe.cpp:412] pool1 backward: 0.648113 ms. I1025 10:20:01.517783 8487 caffe.cpp:409] conv2 forward: 0.398481 ms. I1025 10:20:01.517786 8487 caffe.cpp:412] conv2 backward: 3.08044 ms. I1025 10:20:01.517791 8487 caffe.cpp:409] pool2 forward: 0.0440877 ms. I1025 10:20:01.517794 8487 caffe.cpp:412] pool2 backward: 0.206023 ms. I1025 10:20:01.517797 8487 caffe.cpp:409] ip1 forward: 0.338913 ms. I1025 10:20:01.517801 8487 caffe.cpp:412] ip1 backward: 0.285026 ms. I1025 10:20:01.517804 8487 caffe.cpp:409] relu1 forward: 0.0160883 ms. I1025 10:20:01.517808 8487 caffe.cpp:412] relu1 backward: 0.0158157 ms. I1025 10:20:01.517812 8487 caffe.cpp:409] ip2 forward: 0.0488646 ms. I1025 10:20:01.517817 8487 caffe.cpp:412] ip2 backward: 0.0671059 ms. I1025 10:20:01.517820 8487 caffe.cpp:409] loss forward: 0.12852 ms. I1025 10:20:01.517824 8487 caffe.cpp:412] loss backward: 0.0384621 ms. I1025 10:20:01.517832 8487 caffe.cpp:417] Average Forward pass: 2.17016 ms. I1025 10:20:01.517837 8487 caffe.cpp:419] Average Backward pass: 5.51324 ms. I1025 10:20:01.517843 8487 caffe.cpp:421] Average Forward-Backward: 7.75216 ms. I1025 10:20:01.517848 8487 caffe.cpp:423] Total Time: 387.608 ms. I1025 10:20:01.517853 8487 caffe.cpp:424] *** Benchmark ends ***

 






















以上是关于caffe学习--cifar10学习-ubuntu16.04-gtx650tiboost--1g--01的主要内容,如果未能解决你的问题,请参考以下文章

caffe学习--cifar10-20171103

Caffe for Windows 训练cifar10

使用caffe的cifar10网络模型训练自己的图片数据

caffe学习笔记(十三)caffe图形化操作工具digits的使用

在Caffe上运行Cifar10示例

caffe图像分类resnet对应cifar数据集/lmdb数据集(使用自己的数据)