Anaconda conda常用命令:从入门到精通
Posted 笨牛慢耕
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Anaconda conda常用命令:从入门到精通相关的知识,希望对你有一定的参考价值。
目录
1. 前言
Conda是Anaconda中一个强大的包和环境管理工具,可以在Windows的Anaconda Prompt命令行使用,也可以在macOS或者Linux系统的终端窗口(terminal window)的命令行使用。
本文简单介绍conda的一些常用命令(对于大多数人来说掌握了这些就基本上能够‘生活自理’了吧)命令。当然,本文假定你已经安装了Anaconda,并且在Windows条件下使用Anaconda Prompt或者在Linux下使用terminal window。
本文根据conda-getting-started编译而成,喜欢阅读英文的伙伴们可以直接去读英文说明。
conda命令的一些选项开关有两种指定方式,一种两个连接号“--”后跟选项名全程,一种是一个连接号“-”后跟简称。比如说"-n"和"--name"是等价的。但是要注意有些例外,比如说,“--version”对应的是“-V”(大写的V而不是小写的v)。
2. 管理conda自身
2.1 查看conda版本
conda --version
2.2 查看conda的环境配置
conda config --show
运行结果示例(只是截取了最前面一小段)
2.4 设置镜像
conda有时候安装软件会非常慢。设置国内镜像的话可以使安装更快捷一些。设置方法如下所示:
#设置清华镜像
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/bioconda/
#设置bioconda
conda config --add channels bioconda
conda config --add channels conda-forge
#设置搜索时显示通道地址
conda config --set show_channel_urls yes
2.5 更新conda
将conda自身更新到最新版本,it is recommended to always keep conda updated to the latest version.
conda update conda
2.6 更新Anaconda整体
将整个Anaconda都更新到确保稳定性和兼容性的最新版本
conda update Anaconda
2.7 查询某个命令的帮助
conda create --help
3. 管理环境
Conda允许你创建相互隔离的独立环境,这些环境被称之为虚拟环境
(Virtual Environment),这些环境各自包含属于自己的文件、包以及他们的依存关系,并且不会相互干扰。
Anaconda有一个缺省的名为base的环境。但是不建议把程序放在base环境中,应该创建不同的虚拟环境分别管理不同的开发项目。这个涉及到一个根本的问题:为什么我们需要虚拟环境呢?举一个简单的例子,想象一下你有多个项目要开发,每个项目中都有一些包要依赖于某个共同的包,但是各自的所需要的版本不一致,有一些需要低版本的,有些需要高版本的。然后你就陷入了众口难调的困境。为不同的项目创建虚拟环境就可以把不同项目隔离开来,各自使用自己所需要的软件环境。
3.1. 创建虚拟环境
使用conda创建虚拟环境的命令格式为:
conda create -n env_name python=3.8
这表示创建python版本为3.8、名字为env_name的虚拟环境。
创建后,env_name文件可以在Anaconda安装目录envs文件下找到。在不指定python版本时,自动创建基于最新python版本的虚拟环境.
3.2. 创建虚拟环境的同时安装必要的包
但是并不建议这样做,简化每一条命令的任务在绝大多数时候都是明智的(一个例外是需要反复执行的脚本)
conda create -n env_name numpy matplotlib python=3.8
3.3 查看有哪些虚拟环境
以下三条命令都可以。注意最后一个是”--”,而不是“-”.
conda env list
conda info -e
conda info --envs
所显示的列表中,前面带星号“*“的表示当前活动环境。比如说当前我的环境列表:
星号的位置表示我现在在base环境下工作。注意,也有不是显示base而显示root的,root是因为是以系统管理身份作业(?待确认)
3.4 激活虚拟环境
使用如下命令即可激活创建的虚拟环境。
conda activate env_name
此时使用python --version可以检查当前python版本是否为所想要的(即虚拟环境的python版本)。
在4.6版本以前需要使用如下命令:
Linux: source activate your_env_name
Windows: activate your_env_name
但是为什么要停留在过去(4.6以前的版本)呢?毕竟现在至少已经有4.10版本了,所以如果你不是最新版本,运行一下"conda update conda"吧
3.5 退出虚拟环境
使用如下命令即可退出当前工作的虚拟环境。
conda activate
conda deactivate
有意思的是,以上两条命令只中任一条都会让你回到base environment,它们从不同的角度出发到达了同一个目的地。可以这样理解,activate的缺省值是base,deactivate的缺省值是当前环境,因此它们最终的结果都是回到base
这个只适用于4.6及以后版本。如果你还在4.6以前的话,参见上一条说明。
3.5 删除虚拟环境
执行以下命令可以将该指定虚拟环境及其中所安装的包都删除。
conda remove --name env_name --all
如果只删除虚拟环境中的某个或者某些包则是:
conda remove --name env_name package_name
3.6 导出环境
很多的软件依赖特定的环境,我们可以导出环境,这样方便自己在需要时恢复环境,也可以提供给别人用于创建完全相同的环境。
#获得环境中的所有配置
conda env export --name myenv > myenv.yml
#重新还原环境
conda env create -f myenv.yml
4. 包(Package)的管理
4.1 查询包的安装情况
查询看当前环境中安装了哪些包
conda list
查询当前Anaconda repository中是否有你想要安装的包
conda search package_name
当然与互联网的连接是执行这个查询操作乃至后续安装的前提条件.
4.2 包的安装和更新
在当前(虚拟)环境中安装一个包:
conda install package_name
当然也可以如上所述在创建虚拟环境的同时安装包,但是并不建议。安装完一个包后可以执行conda list确认现在列表中是否已经包含了新安装的包。
也可以以以下命令安装某个特定版本的包(以下例为安装0.20.3版本的numpy):
conda install numpy=0.20.3
可以用以下命令将某个包更新到它的最新版本 :
conda update numpy
安装包的时候可以指定从哪个channel进行安装,比如说,以下命令表示不是从缺省通道,而是从conda_forge安装某个包。
conda install pkg_name -c conda_forge
4.3 conda卸载包
conda uninstall package_name
这样会将依赖于这个包的所有其它包也同时卸载。
如果不想删除依赖其当前要删除的包的其他包:
conda uninstall package_name --force
但是并不建议用这种方式卸载,因为这样会使得你的环境支离破碎,如以下(conda manual description原文)所述:
一个直观的理解就是,如果一个包A被删除了,而依赖于它的包B、C等却没有删除,但是那些包其实也已经不可用了。另一方面,之后你又安装了A的新版本,而不幸的是,B、C却与新版本的A不兼容因此依然是不可用的。
4.4 清理anaconda缓存
conda clean -p # 删除没有用的包 --packages
conda clean -t # 删除tar打包 --tarballs
conda clean -y -all # 删除所有的安装包及cache(索引缓存、锁定文件、未使用过的包和tar包)
5. Python版本的管理
除了上面在创建虚环境时可以指定python版本外,Anaconda基环境的python版本也可以根据需要进行更改。
5.1 将版本变更到指定版本
conda install python=3.5
更新完后可以用以下命令查看变更是否符合预期。
python --version
5.2 将python版本更新到最新版本
如果你想将python版本更新到最新版本,可以使用以下命令:
conda update python
关于conda的更多:
以上是关于Anaconda conda常用命令:从入门到精通的主要内容,如果未能解决你的问题,请参考以下文章