练习:微信好友分析

Posted Ryana

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了练习:微信好友分析相关的知识,希望对你有一定的参考价值。

来源:http://www.cnblogs.com/jiaoyu121/p/6944398.html

 

1.好友性别分布

import itchat

itchat.login()
#itchat.send(u\'你好\',\'filehelper\')

friends = itchat.get_friends(update=True)[0:]
#print len(friends)

male = female = other = 0
for i in friends[1:]:
    sex = i[\'Sex\']   #1男性 2 女性
    if sex == 1:
        male += 1
    elif sex == 2:
        female +=1
    else:
        other += 1

total = len(friends[1:])
#print u\'男性好友:\'+(float(male)/total)*100
print u\'男性好友:%.2f%%\'%(float(male)/total*100)
print u\'女性好友:%.2f%%\'%(float(female)/total*100)
print u\'其他:%.2f%%\'%(float(other)/total*100)

输出:

可视化

from echarts import Echart, Legend, Pie

chart = Echart(u\'%s的微信好友性别比例\' % (friends[0][\'NickName\']), \'from WeChat\')
chart.use(Pie(\'WeChat\',
              [{\'value\': male, \'name\': u\'男性 %.2f%%\' % (float(male) / total * 100)},
               {\'value\': female, \'name\': u\'女性 %.2f%%\' % (float(female) / total * 100)},
               {\'value\': other, \'name\': u\'其他 %.2f%%\' % (float(other) / total * 100)}],
              radius=["50%", "70%"]))
chart.use(Legend(["male", "female", "other"]))
del chart.json["xAxis"]  #x轴y轴暂时没有隐藏
del chart.json["yAxis"]
chart.plot()

 输出

 

2.好友个性签名

tList = []
for i in friends:
    signature = i["Signature"].replace(" ", "").replace("span", "").replace("class", "").replace("emoji", "")
    rep = re.compile("1f\\d.+")
    signature = rep.sub("", signature)
    tList.append(signature)

# 拼接字符串
text = "".join(tList)
print text


import jieba

all_words = []    #用词列表
wordlist_jieba = jieba.cut(text, cut_all=True)
all_words.extend(set(wordlist_jieba))   #set(data)去除重复的词

from collections import Counter

count = Counter(all_words)   #统计出现次数,以字典的键值对形式存储,元素作为key,其计数作为value。
result = sorted(count.items(), key=lambda x: x[1], reverse=True)  #key=lambda x: x[1]在此表示用次数作为关键字
print type(result)  #元组列表 
#for word in result:
#    print word[0], word[1]

输出:

可视化

from pyecharts import WordCloud

data = dict(result)
wordcloud
= WordCloud(\'微信好友个性签名词云\',width = 1200,height = 720)
wordcloud.add(
\'test\',data.keys(),data.values(),word_size_range = [20,80]) wordcloud.render(r\'E:\\wordcloud.html\')

 输出

 

3.自动回复

import time

@itchat.msg_register(\'Text\')
def text_reply(msg):
    # 当消息不是由自己发出的
    if not msg[\'FromUserName\'] == myUserName:
        # 发送提示给文件助手
        itchat.send_msg(u"[%s]收到好友@%s 的信息:%s\\n" %
                        (time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(msg[\'CreateTime\'])),
                         msg[\'User\'][\'NickName\'],
                         msg[\'Text\']), \'filehelper\')
        # 回复给好友
        return u\'[自动回复]您好,我现在有事不在,一会再和您联系。\\n已经收到您的的信息:%s\\n\' % (msg[\'Text\'])

if __name__ == \'__main__\':
    itchat.auto_login()

    # 获取自己的UserName
    myUserName = itchat.get_friends(update=True)[0]["UserName"]
    itchat.run()

 输出:

iosOwrzq6t2R2xkkdyeprsZ2F5eTXEh7nmsm8tBIkzqOVH613UWoaCnTujlAu5io6Cr+nyNG2Oo7inQaew3E9lJqdrIwMD3AGa7JSizljCS1LDPGRlePaq5mEEoYcHOcimmZUcxseD90+hqlJIXRkP3lrNRLcj1jwpq6arpeHwZYxg57+hrXJ4rzDwRrC2d7GrEBJPkb+lemM4POa4qsOWRondCsATzULqMYxxTy4prHcvBrEaK0keGyOa6vwwMaSeMfvD/SuZdTnrXUeGxjSz/wBdD/SunCL94RV+E1qKKK9Q5QooooAKKKKACiiigAooooAKKKKACiiigAooooAz9Z/484/+uo/kayx92tTWf+POP/rqP5Gssfdr57M/4vyOGv8AGLSjrSUo61wGJ5t4b0Gx1vVNRW9QsI3yuGx1Y16OiBI1ReigCuJ8C/8AIW1X/e/9mNdrJKkEUkrnCopYn2A5rsx8pOty+hrWb5rEd5ew6dZS3Nw+yOMZPqfYe9cdHpWreMpWv7qeWwsz/qIgDkjscVn6tq11rEQ1GSI/ZhL5dlbsM+Y/95h3+n/16mZ/Hd+RGVmgUD+ErH/9euijRdKHNdJ+fQuMeVXvqd9Dbi2hjgVmcRIEDMck4GOafXmWpaH4g0SzGrXF0waNxkrKWYfnXomn3P23Tre6zkzRK5+pGa5K1FQSmpXuZShZXTuWaKBzxTZrd5oJIVcxtIjKHHVSR1FcvWxmQRajZTXclnFdRPPH96NWBYVcQNtbAPTtXG+HvBl3pGsLfXM8bhVIAXOSTVnVfHlhpVzLaQo9xMnyttOFVvTNdMqHNU5KPvGjheVo6kPh251O78Vap9quWaO3+URrnYpz2HtXWsMYBHavJNI8Tatpb3VxbQK4nk8yZ3UkDn9OteoabfjVNNt70Lt85A2309a2xtGUJc1tNiqsGnctMQiF2+VQMkngCoHvrOOMSPdwKh6M0gAP41y/xBv7j7Ha6XbbiblvmVerc8D86x4Ph9qRtllup7e2G0Ehjnb9e1Klh4Omp1JWuEYJq8mdhceK9Dth82qQH/rm2/8AlTF8Z6C68aov4ow/pXLDwRplsqm/1+2jDDI2kDI9smtX/hW2kPb7o7ydmIBVxgirdLCR3k/uHy011Omsr+11GDz7S4WePOCynvVjtXJeBoGsX1SxdsmCYKRj0yM11vauPEU1TqOK2MprldkU9T1WHSbJppcs5O2ONeWkbsoFcull4rFy2qqkXnzqV8p24gHpiuq/s6F777dNmSROIg3SMd8D196851XVLvUryb7VqEsdrLOyrDHk4VTjkV2YSPNdRt53/I1pK+iNuxs9Wv8AUvLvfFCRSggmC3lBb8hXanqa4pvBttol3p13BPK832xA28Y46/0rtj9449axxUoyacXp6WJqNO1jJ17QLDV4hLdoWaBG2YbFYHwz/wCQbff9dF/lXX3P/HrN/uN/KuQ+Gn/INvv+ui/yrSnJvDTTe1hxb9mztACegzXNa94ju471dI0eLzr5x8zYyIhWzq97PYadLPawtNcYCxIozlicCuZ0a2vLHXHtYSst0YPPvHb+N2PC57Ae1ZYaEbOpLp0Jgluwl1TVdG0kabPdrNqVyxKsXz5Kf3mY1Dpus6F4VikUX0l7dS8zSRfMpP1/rW3/AMIla3Nldm9la4vLo5eTO3kdAPRc1y1jotvb2Gp2t1bW0F7affmmJZVQ9CAK7ISpVItPvrbT+kapxkmdvpGtW2u2n2q1L7d20hhgg1f71m+HrSztNFt47CZZ4cZ8xejN3NaXc15tVRU2o7GErXdhsjrFG0jsEVBuZjwAKztH8QWmtmcWhdhC20sRgN7iofEYlvTDosLYN7/rWB5WIdT/AEq9pGnaZp0LWmniJSoG8KQWz/te9Pliqd3u9h2XLqUr/wAW6RpcskU15umj6xIpY59PSqlj40jv9WhsDYXMPnDMbyLjdxnp6U6y8IaZo19catPOZSu5w0xGIx1J9z71Jo91ba5qUuoxspEA8mFD94A8lj9a6OWioNxTem/mVaNnY3ewNFKQVAyKSuJGQUUUUxhRRRQAVT1TV4NFsmuZ8nsiL95z6CrmdoLE4A5J9KybTGozvqjsiRRqVtGk6Ad3/E9PaqglzXew1vqRaB4jn1+yvZPsbW7QZVc85OP51m+G9eNp4W/tHVbyaUNMVBZSxHtUvh/xXbLpUi6xfwJcpMy8DG4euBWBput6H/YFzpOo+eyNcM6iEdVzwc16HsW3KPJpdf0jbl3Vjv7O9g1G2S6tpRJE44YVYqrp1pa2VhFBZR+XAFBVe/PPPvVqvOlbmdtjB7iMyxqWdgoHUk4xVRNY08vIsd7DI0SF2VHDEADk8VzHjzRtRuI7nUHvcWcCA+Tkj2qrpmn6Ta+D7+8tbgTXrWgWUBs7N2OP1rrhh4Ompc2r7GqgnG9yI/ErUXZkgsI2ZmJQ4JwvYY71qeGPFOqapq72WpxCI+XvRfLKH9aiNnLp0fhv7NKsKSlFlRFwZCQCxY9/xrVnjDeNbOQdRaOT+YroqOjyuMY7p6+hcuS1kje7Z9aKONopJNqwF3baigktnGBXknMc54w8QWNvol1ZJdK9067PKRvmXPrWXpPjfStE0e1sYxPO0KfMQuASeT+tUNA8NWGva1cyx+cNNiYhWZss5+v610194S8O6Rp1zdnT/N8mMvh3JJx+NetJYenFUnds6XyRXKyXw94ug8QzSwxW0sRRdxLcitysXwZLFdaCLiKzhttxYMsS4Bx3rargrKKqNRVjGdlLQMZqE3tqrvEbmESKMshcbgPpU4XeGXJGRjI7V5b4j8MrpVyCL5rq4uX+SPHztnuavD0Y1ZcrdhwipOzZvza9FL44QDVfKsreM+YGlCxs3p79f0rek8WaGrYOqwnjsSa5+z+HNl9kSXU7p0kxllQgKvtmrNp4G8KyzFIrp7hx1VZgcflXTUWGel3ppojR+zOltbuC+gW4tplmjbo6nINS1FbWVvp8CWtrGI4oxhVFTV5ztfTYwKOqazZaNCJrybywThVAyzfQVjXPjixurZ4raO/l8xSN0MRBX6H1rX19pIdIurmCFJJ4ULR7l3YPr/WuRTXLea0j+3+IbxZPLBZLSPaAcdMjvXbhqUZx5rXNacU1cNA8S6lYaY1vDo19fIszYcKx2+xOOtdrp19NqFhHcT2klo7dY5BgivKrdLS6tpILaK/mv3lPklX+UAnq3v616zZQzW+mWsNxIZJY4wrue7Ac1pjowi7pWbKqpIloJwM0UjKroUcZB4I9a805znn8f6LFJIn2iVthxlUyG+lVJfiXYL/qrW4k+oAzWgngPw9v802rcnO3zDisC/1fQ7C7urDTtEhluYm8qJmjDhm6Hrz1r06dPDz0hFs6Ixg9kTL8UYmcBtNcIeCQ4JFdpG4ljDjOGUEZHrXI+G/BwEn9payqGdjvSDbgKfcDj8K6+ufFewUkqRFTlv7otFFFcpmFFFFABRRRQAUUUUAFFFFDAY671ZP7wxW5Z3i3cQPSRR86+hrGoR5IZRLEdrr09D7GuvC4n2EtdmaU6nIzoaKr2l4l4pwMSD7yelWK+kg4yjzRejO26aujhLcZxknijUn8rT5WGelNtww5qrrk7Jp7A8HrXgR3PUt7yOQnlKCOHJ+fk/iaiN3mJ8dZHP6Uk53XMRPQR5FdH4N0K21DTpribGRIyjI6V2XSVzTqcqhDW8jZGW4H50SRTXSyNGmdox+VdPe2dnpr7LHSJ7wl/mkKEKOa6ux0yK40QubaOCRlJC7eho9o1qTaJ4ydKvpjhIWZSOTVZ7S5inLPGVwcNmu/fw9d3u+FruWNd3IiqyPBtpZWzSM8rMR/GxNarEKxl7BNnmqyNau4XIK/MK9U8P6t/aWkJKSS4UA15nrMItdUZMfdbGPat3wrfNZqbck7HPymqrLmjzGcFZtHe+dT9421Qjk3jA5qQO3T0rhsaFvINdV4c/5Bh/66H+lcaGINdf4YOdKJ/wCmh/pXThf4hnV+E2KKKK9I5QooooAKKKKACiiigAooooAKKKKACiiigAooooAz9Z/484/+uo/kayx92tTWf+POP/rqP5Gssfdr57M/4vyOGv8AGLSjrSUo61wGJw/gX/kLar/vf+zGu3wpyGGQeK4jwL/yFtV/3v8A2Y121dWP/jv0RpW+NnH+JrEvrOi6dYlbZQzNGQvCEc9Pwqt4QuRD4gu4rjWBPJM5RI2LZkYH73Nb3iW2lRLXV4IzI+nyiR0HVk/iH5Vxdnq+g2niCbVYrOYohzDEcfe7sT268CuyknVw/KlfT8bmkfehY73xeiyeFr1WwR5WfyNJ4Zz/AMI5p+f+eC/yqp4hvv7T8JIYEKy6jsSKNjzliK2bS3W0tIbZPuwoqD8BiuCXu0uV9zF6RsTDqK8+13xf4gg1GW1toDaxmQpGWjO4/Q9DmvQV65rznV9auk8aSyHT5LqWA+XaxMDhT/ex3rbBRjKbvG9kXSSbd0afh+xvLTWIr3X9VQXMinZbyS/Pz/L6Uzx3ZaVZWSNBYxC9vJuHUfN7mrNp4av9W1GHVtbkjjZMEW8Y7DkAmqyEa34juNYuAzadpWdmBneV5yPX1/KuhSvVVRPZa228kWn73Nc1Nbto9I8CyWoUZECoRjqxIz/WtPQ7d7TRLK3k4dIVDfXFYq6mnjR4YILeSOyglD3DyY/eY6KP611JxniuOs2ockt73ZnJtKz3OS8WKItf0S6fhBOFJPQfMKofESa8a8srYymK0lGMk/Luz1P0rofF+lPq2gvHApNxEfMjx3I7VzWoeK9G1fQ4LTUbW5e4jUbimBhwMEg+9dWFvJQklflun/mXT1s10KF9o2h2Fk6Nqf229YbY47fBG7tnHbNd/wCHbaax8P2trdH97HGA3PTnp+A4rz/w8+hXOrQQyWExVjnfNKNq46E13OtaoY4RZac6y3t0Nse1s7B3c+woxanJqnq+uoVLvQr+GVEs2q36j5bi8cKfULxW/wBqq6XYRaZpkNlHyIlwW/vHuatYyDXnVpKc20Yyd3cSWWO3tJZ5XCRxDcxPYV5zarqlzHcX9g0FtppuWliN2wwrHqVzxmuj1KO48UO9jay+Tp8bYlmH/LVh/CvqAa4zVdJutH1OC31aWaezAxG0bfw+wPSvSwkIpNN+8+n9dTemlbzNbRfEwN3E+uaj5hhclFRAfmIxkkADAGelehH7xrzbQYdAvdaWaQxWVtAcok7/ADSn1YnjHtXo8TxXGWhmjkXP3kYEfpWGNioyXKrEVUk9CO5/49Zv9xv5VyHw0/5Bt9/10X+Vdfc/8es3+438q5D4af8AINvv+ui/ypUv93n8hR+BnbLjJye1c2FnsvHfmbcw3ttjd6Fa6PgHJIAHJJ7VyVp4yjmtr28e2eVLebCqg5WM8BjWFCE2pOKv0JgnrYoSaVf+HpZdavpzdRRz744xMV6nrj+laNsINU0+/wBZ1G2aKC9jWNIEJ3OB0xjufSr1zLL4m0LfotxHGS/zCVQTx2I5xVS70/xBp2mNeNqdo8kSE7XQBUwP4e2cV187mvedpbGl777h4V1ZJrmTS7fSJrOCAfKz5P4HPc10lzNFawvPO4SNBuZj2FZ3hrUZdT0WG7uAomfIbaMDg1F4iS0uVgt9QlENmSXdmfYGI6Ln/PSuecVKs01bv1IavKxxlzrOra/4guH0LeC6CNG6FUHfP8Oa0PC6f2Jaaxql0PPa2/d7wSdzd/171Q/ttPD51aPR7dpobhh5M6qdsfHTJ64ro/A96brTGs3050to1/1koz5rHrnNejXbjSdo2jp6m89I7aHMXvjfVtXSS1itkEMikMiqXJFZllputNqcNnbrPaTzLuBYmPK+texwxWsClIYUiHoigfyrBt1S+8XT3aLmOyi8jd6ueT+VZ08ZGMZKnCysTGqkmkjYtY5YbK3imlM0iIFeQ9WI6mpaM8D2rG8R+IY9AhidoGmaUkAA4AxXmRjKpO0VqzBJydkbOaKo6PqkOsabHewqVV8gq3UEdqvVLTi2mKzWjCiiigCG8tft1jcWm8p50ZTcO2a4S/8ACV/bQBtR12MWkK7U3knA7AD/AArtNY1SPR9MmvpELiMcKP4ia5a20+41m/Gp+JZkt7bBaG0kfbx7g/8A667sLOcE5Xsvx+RrTbWvQx/C3hiLW7maWWRjZRPtBHBk9PpxUzWelaFrup215bpIiwmS1MvPPYe/P8q6nTZ7PRdAlv5gIYp5nmRAMEgn5QB9MVyuqDVdTf8A4SO600Cyt2XbA4+Z0znkdxXZGtOrVkpO0dvmaqblJ32O18OzX1xo8M+oNuml+YfLj5T0rUqCyvLe/tYbm3dRHMoKDP6VP0Jrx6l3Nu1jlluzz/xxZ6/m6uJ7vdpxkG2IP27DFa66JZ6R4Su9Oik3XV1bl8HqxAycD0GKxvFetyarfyaVBa3Ek0VxhY1OUbHcjvWzaFvDWlz6trcvn38wxgnJ9kFem3NUoJ6Pol17HRryop3ep2z63oqSShYLO2E8j9hleP6VsaRcw6vq9xqcBJt0QQQswxvPU4/SuYtvPso49SvbNWk1iTyVgPy7IjxgDt2x7V0PilJdD8PWsukIqC0mU7AMgjkc+vJ/WoqQjdQj10/z/HQUktkdIVxXPeIZbjU5F0CyOGl5uZO0aeh+tbyeZ5MfmgeZsBbHr3/WoLeyjtbeQKS8szFpJT1Yn/PSuCnJQlfr0MYuzuYXheeSC3nMUCR6XBuELLzJIVPLH64rA1jx7PqFrc2lpYhEkRkZmJJCkYPHaup8Gosfhi2ViAyl9/PQhjWbrfifTrzS7qKyuYImkjZDuQln4weg4z613QSdaXuX1/pmyS5npczvATa/I0IRmTS03FwyjDdenfrXf1yPhvxRpNtDZ6NbrOxx5YkK4BY9/wA666scY5uq3KNiKt+bVWK1/fjT7Yy+W0sh+WOJert6Vx2pafe6fZzazeyB9UunEUO3kQ57D3xx+Ndv5MZmEpXLAYB9PpWL4ntorpdPhnj3wvdKrrnrkGpw81GaXff/ACFTdmcnaeF7/VJWhk1u2k8r7yJMZdlXLXw/J4Z8XaTJ5/nR3DMhIGMHB/8ArVY8Iafq2m6xcxXFgsFuQSXK9eeAD3FbWuhZNW0ONeW+05GPQDJrtqV5uq6fNeLT/I1lN83LfQ3GOWJ96SjufrRXkI5zM1u+uLazlFg8BulIO2WQDaCepya4955Cd0mp6FZt6RxLIR+ODWle+DLa3iuL1/tWp3BO4Rs4XeSe5rPt9K1Mw4j8KWMTf35m3foTXq4f2MY6P77HRDlS0Zk2d75EUy/8JDcWuZSdtujYf/a4Iro/C3i9poodPvvPuLhn2rMF3cHpu/xrL0XQtav7OWS1ktrWNpmBPlgnI64OM4rvdJsI9L0m3slwxiHLgY3H1q8ZVo2cXqx1ZRtYt9KUKcZ7UhI+lYuqSahqQbT9MbyVJ2y3R/h9Qvqf5V5MY8z7HMlco634pma6bSNCiNxffdZ1GVjrn/CVpNZ+N2t7thJNGGMjdfmIyf513WjaPZ6JaiCCPLfxyn7zn1JrktIJPxNvjjjL/wAhXpUZw9nOEFpbfubwas0ux1et6za6DbC4vA5Vm2qEXJJqzZXcOoWaXds+6KRcqao694ftfECoJ3kQocgqf6dKvWFnDp1hHZ267Y41wtef+79mrfEY+7bzJ6KKKhCCiiigAooooAKKKKACiiigAzTWYLkk4A6mlJA69OtX9PsMlLi4X0KIe3ufetaOHnXlyoqMHN2Qul2bpN9qkBTK4Ve+PetLvRx2or6ejSjSgoRO6MVGNkcJaDcuKyfFjeVYEDqRitK1crtyec1keIQLm/hhzlRyR614sPiPWW5yu4sICTz5Vdn8OLyM/a7JiPv71/LmuU1K2W2uEjU8ImKw7XV59C8Q291HIyqko3qD95c812Rh7SNkOpLkR9AzWUWAz8j0qISbosRxFgOABxS/a4byyilgnR1kUFSDVaZJrfbPbSeYoOGXPBrlk7aExT6mUumaiNSN1GEVN3zKGyT7UzX7ny7ZiRtOO9UoNdk0rXbiV97wSH54j1X3FYnjbxAJLRpLY7olwGJ7H0AohTm2kau8XeWxxfiIibV2YdxVrTo28kdQw5BrHjma9u3uH6dcegrqrSJRbrjkqa76vuxUTlptSk5G9YTlrVG3ckc/WrofP5ViWkm12ToM8VpiTjrXK0W0W1fPFdn4W50g/wDXVv6Vwok54Fdv4S/5Ax/66t/StsN/EM6vwm5RRRXonIFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGfrP/AB5x/wDXUfyNZY+7WprP/HnH/wBdR/I1lj7tfPZn/F+Rw1/jFoGe1FKDg5FcBieY6B4httC1PUGuo5GErkLsGehNemIwkiSQZwwBFMa3gbrDH/3yKkHQD0rfEVoVpcyWpc5KTuDqkkLxSIHRwVYHuD2rnn8GaRFZ3C29qPNkjYIzuTtODjHpXQ0VnCpOn8LsSpNbHPaB4euLKRLnU7trueMbYkLEpEOnANdDRRROcqkryBtt3YDg5pxfdxtHNNo7VmIztYNzdQrp9pmNp+JJR/yzTufqegqxBp9pBpg09IFFvs8sr6jvn3qzRV87sooL9CO3toLSFYbeFIo06KgwBUlFFTvqwFzx0qgdE0lrhrh9Ot3lc5ZnTdk/Q1eopxbj8LsCdtjN1jQbHV7A2jRLbjOQ0KhcGm6L4esNChZbZC0jjDSvyx/+tWpRV+1ny8l9CuZ2sFMmiSaJonyVcYIBxkU+isySlcwXTRC2s3jtYwAA4XJA9h0FZ0Pg/TN7S3vnX8z9ZJ5D+mK3qKuNWcVaLsNSa2OOvPh3ZSyF7W6lgB/hI3D86u+F/Cn/AAj8807XjzvJxtXhce49a6SitJYqrKPK3oU6kmrXMXxH4gttDjWG4jkZp0bbtHTtWJ8My39nXwI/5aL/ACrsnjjlILorY6ZFORUjQrGiKD1wMU1WjGi4JasOZKNhynBzjNY+leGrDSLy6ubcMRcjDRtyoHpiteisIzlFNJ6MlNpHJX/gYNctPpV/JYb+WRCQv6VDb+AnllVtU1Wa6Vf4Qx5/Ek12f4A0d+ldCxdZK1yvay7kVtbQ2lulvAgjijXaqjsKfJGkq7ZEV19GGRTqK5utyBysFXaEUAdABgUbuMYA96bRSsBzdxZ+JpNanWK/jj0+Q5ViAXQY6DjrW5Y2UOn2iW0C4RO5OSx7knuasE57CitJVHJJDcr6BiszxAsE+lvbyWYu5mB8iPGTux19gO5rToBxShLlkmhJ2dzN8P6WdH0eG0Zsuoy5H949a0qKKUpOUnJ9Qbbd2FFFFIA47gH61j6p4Y0/V9QhvLlDmIYKLgB/TNbFFVGcoO8XYabWxDJZ20s0cskKuYhhAwyF9wKmlEc0LRSRqyuCGB5BB9aKKm7Ec5ovhVdG12W6im8y2KERRscmMnriuj70UCrqVJVHeQ3JvcX5N7OI0DsMFgOT+NY50ddQ1QajqK7/ACjiCAnKoPU+pPWtejtSjOUdhJtGT4j0ZtasI44ZfIuIHEkUnoaybTQNcvLuBtd1FZraBg6xJ0cjpngV1gOKCc9gK0hXnCHKilNpWFZt2OKTNJS1gQUbHS47C4uniY+Xcv5nl9lPfH1rDl+H2lSTM6yzorHOwEYHtXVUVtCvUi7plqclszK0zw1pWkyCW2tsygcSSHcR9K1aKKiU5Td5O4m29wqlqlo95bRrGQHjmjkUn/ZYE/pmrtJUp8sroS0YlwXMEhhUCQIdmemccVzuhWusXl9FqmuKkckCFYYVHTPUmul3EZ96TOewq41HGLSW/UadkKetJRRUCFX7w+tYHiiXWlFumjA7pGKP8mdo/vE9q3qM5qqcuSV7XCLs7lTSrFNN0qCzXkxL8zf3m7n86t0Ek0VD953YbhQAB2oop2AKzLbQLO112bV03edMuCpPAPcj8q06KqMnG9uo02tgoxRRUWEFFFFMAooooAKKKKACiiigAooopPYCK4/1Mn+4a6ciuYuP9TJ/uGuor2sr2kdOH6iYpKdTa9hHSzzyzyDjkgU2SyjvriUMMs7YAH060QyELyMMa0NJt3aSSYkbulfOq56i3OC8QQGx1BI5GJjkQhWP1xXIa3H+/R84yoz9RXo3j3TmbSoJv+WiORn61j2Hw+1XXoIri5YWkLAEFlyzfQV6FCpGKTbLrw5qfMjJ0LxFf6JqtpEbo/YndfMRjwATz9K9Xv5Y47czWF6CJ0DKByD6GqNh8PdFsCjSwfaZFwN0nI/KqeubLm9kt7MCKW1UbdvAx9KxqTjUloi4JOTMu/vHvY/MK7LqP5TgcH3rlvFmU05UWQMC4Lcd8VtyyyLC08pIlOQwHArk9fnaWAZ6Fq3oR95GOIa5GZVvM8SkKetbum68LdQkyFkx94dq5xc7TW5oWjSamrM2RCvU+vtXXVUbe8clFM6e3voLn97E/wAprSRwUBzmuPss6VrE+n5zEfmSujikworinC2xvGV1qaQkxgV3/g//AJAh/wCurfyFeapIM9a9H8EkHQSR/wA9m/pV4de+RV+E6Giiiu85AooooAKKKKACiiigAooooAKKKKACiiigAooooAz9Z/484/8ArqP5GssfdrU1n/jzj/66j+RrLH3a+ezP+L8jhr/GLRRRXAYhQKKyNb8QWGl2lwktwhuPKOyJT8+SOPpThCU3yxQJN6I1I5o5l3ROrKDjKtkZp9cB4d8XaToGipavHLPMzF32qMAntmtzRfG1nrmpiyhs5YmZSdx5HFdFTB1YNuzsuppKlJXOjopT940lcqMgooopjCiiigAooooAKKKKACiiigAooqtqOowaVp815cY2xrwPU9gKai5OyC1yxS1yHh/UNZvNZE+pXkMEMqEx2jEBm9CF612DdvpV1KTpS5W7jlHldhKKKKyEFFUdY1CXTbFriCzlu3VgBHGCSfeuRvfHOtDHlaQbYMwUGWNjkntzit6WFqVleJUablsd5RXIaVqHi251CFbq0WO3LjzGZNuF/Ouv/hqatJ0nZtP0FKPLoFFFFZEhRWDeeNdKsr9bH5riTeFYxDcFJP61vdcnFXOnOCTkrXKcWtwoooqRBRSqQDk9K4vUdb1TxDey2Hh793FAcSXOdoY+xrSlRdTbRdxxjzHZ5wCaarrIoZGBB6FTkVxmrajcXiw6IdQhjESBb67LBVJHVR6n2qa18X+HdAt00+0E08aHO8L+Z5rb6pPl01Zfs3Y6+iora6ivbaO6g5jlUMvGODUhIUEk8DrXI007GQtFcNqnxKUSmPTbRSoOPMlHX6CmaN4v13UdS8kW0MyqCzxhNpAx612/UK3LzPQ29jO12d5RXK6F4zn1bzYP7MeW4XLYjICqvbJNP1HXbw+ItN06ydNzYN3EBu2Dvk/SsvqtSMuVk+zknY6einMOBioZ7iK2haWZwiL1JrnSbIRJUVxfWtmoNzPDCDwDI4XP51zur6xqL2pkjdNJtOn2i4H7x/8AdSsnRfD2jeJhLM1zezyxMPMlmON+a64YZcvNN6eWpoqel2d4pDDIIwfSlpkMSQQpFGu1I1CqPQDoKfXIZBRRRTGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFKWwEVx/qZP9w11Fcvcf6mT/cNdRXtZXtI6cP1Cm06m1650s82jcHkEY/lXQ6PxZk9ya5S0YSoFXBzxXX2cRjgWPuBzXgLc9QmksYbwqJkV1QhgCMjNWZL6K3KxuVGfujFIHWKM+wrz/xzqmIGCttKjII7VtGN2kgSvvsd1qOsWFjaSTXMiJt6EtivGk8a21v4mlvdrywu5DYPUVyl7qV3fNie5kkUHgM1V1QZJwOld8MMl8Rh7Zr3YHsGq6NJqNslzZLiKZQ4/EVzV54YkNq6Tckrx7Gu88G3y6p4StApy0S+Ww9CKbqmnlg3XpXGpyg7HTG0tzxmy0q5utU+wgfOGwfYetekWNphpliLePGAtUhaR6bqb3BTDOMZq08xkXINaVajqWsFKnyI43WmA8RxOO64rajkBiU1iayudYgbHRTWhHLtiWtmrxRy395mjG+Olen+Am3eHSf+m7fyFeULOOAMV6n8PG3eGif+nh/5CiirTFUfunU0UUV2HMFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGfrP/AB5x/wDXUfyNZY+7WprP/HnH/wBdR/I1lj7tfPZn/F+Rw1/jFooorz3sYjo8BvTivNhoFp4j8ZXK2zym0jYtPKWzuOein611mv3tyVTS9O5vbvgEf8s07sfSqfhmOazu57C0iiNnbMY5pj995e/4V3YdypUpTT1t/X/ANYXjFsuL4I0G0tnlNj52xSx3OSePxqp4Lu7a/s7iaDTYLTbJtHlDkjtk1m6h8Q51kntbGxJZWK7pM5+uKyfBT6817EliSlgJgZ2KjaR3Hr0rf2FWVGTqv72XyScW5Hpx4JopWOWJpK8pHMFFLg0lMYUUUUAFQz3drajNxcRQj1kcL/Opu341xur+Bp9U1aa8F+oWVs4dSSvsK1owpzlacrIqKTersbr+KNDj66rb/wDAXz/KoG8baCpwNS3f7qMf6VjR/DO2x+91Js/7MdTQ/DTS1X9/ezOf9kYFdXssIvttmnLS7mzZeKdG1CZYINQVpHOFVgVJP41rVzdn4A0ayu4bpJZ3aFg6qx4JHIrpBwa5aypJ/u22jOSj9kjmuYrSJ5p5FjjQZZmOABWDGv8AwkUw1C8TydMtvnhWTjzSP429vSppNAm1HVpp9SuPNtA4MNsvC8dN3rV3Vb7SrXT5re/niVHjKmMtgkY7CqjaOkNW+3Qa02OS1az03xJfyXOh3xfUYyGKZI344yp9aht/Hes6NL9l1WyMhUdZFKP/APXqnpepeHvD9613Abm7ucHAHyoue3PJ+prttNurTxZphlutPIjztCzKDn3U16NR+zjyzheC6vc2lorNXQ/Q/E1n4gV2t96OmC8bDp+Navc1XsdNstNi8izgjij9FHX8e9WcGvIqOLn7mxzO19DO1zW4dAs/tUysx3AIg4LGuB8QeNn1pYI1svKWKUSDLZJPpXV+IoBqHirQ7GRBJF80rqRkHHrXL+KbLV5NWgtRZ29tHJMVtUiUKDzwTivUwlOlHlbWu+50U1FWuW5/HfiGCOO5m0sRWpcZLRMA3sCa76KVbi1imT7sihlPsRkVzepQTDwLdWuq3cdxdiMvnI6jkAVq6Bcx3GgaeElV2S2RWAOcEDHNc1dQlDmjG1nbQidmrpGjg9QDWVLI+qvJFG7R2MZKyyg48wjqoPYDuasa19sOhXgsN32kx4j29ffHvjNeUXl5rCQR2WoG4iRRhIWGwY6fd/rRg8L7a7TswpU+bqdloXiGwuPE0likFpDax/JakRAMzeoPvXX+dEZHQSIWXll3DI+tef8AhbSbBdOm1WK4WbUYYHeOEHOw4OCR61S0rwlrGtxC9UqI58kSSPktzzXRVw1KU371ktNS5Qi29bWPSEv7J5fKS8gaTptEgJ/LNWBXl2seEp9JmtIY7pZ7i5bCJGCCPevT4htjClixCgZPeuPEUIU0nCV7mU4KNmncxvEL310sGlWKsrXhKyTAcRoOprO0KG5ktr2102RYLaKUwI+0ZGPvP7sa62PhwfSuT0myvPL1/Ri3lEys0MgyOG6GrpTvSce1v+HHF+7Ydqvge2bQ/KskaS4hywLPjee5PqeKw4NK0u70eymdLawieTZcSOSZCw6gHtVmF7jwU0Zu0kvZ7obF2ykhcHgAVdvLC2tNARdSs5rm6kle4FrCTwWOTnHYcc11wnONlzXTej79zVNrqdbHGkUSRxACNVAXHTHalxWT4c1eTVrEyvZSWoRtqhhwR7Vqy52Pt64OK8mpBxk4vc5mmnZnnWkeJ9PsL+/nuLHzZbi4yjKo/dr2x/8AWrpIHFv8Qr0OAqvZq5J44Hf9K5fTIZ4jorrpcVxHIThynJbcQc/QCupuWhHxBBnZFjfTyGLHA6969fERipNLs/wOmaVzBvPGOmWl3ImkWzQrOxM88Q2s3+76fWrXhfxELzVls7XR44ImUs8o5c47se9Y/iyy8L2kSDSpwbkSYdUYsAvfmt3SvF+krLa6dpmnSjewQlVAOP7xx19aqdNOheEG79xuK5NEdiegpkqJhZWTcY8leMkfT3p56U2ZpEtZHhTzJFUlVz9444FeLE5EeV3OuXd1qBvdQ09rgBsRRSgiNPbHeulZ7q606O98RKun6fGwZbeFCC57bh6e1Yc7+L3vGvprKXzUBKsYdwiH+yDkD+dTaRp+ueLrZ3n1Rhb7trKzHkj/AGele9UjHlTukl21+47JJWPQLK8t9QtkubWUSxOMhlqeqGgaPHomlLZxyGTbksx7k1fArw5qKk+V6HI7X0Ciig8daQBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRSlsBFcf6mT/cNdRXL3H+pk/wBw11Fe1le0jpw/UKbTqbivXOpnlfhCP7VMZSAFjGQPeu4i2xrnit3bj0/KkxXB9Tu73On6x5HL318sKMd2MCvIfGesGeVo1brxX0OF+lGz3X8q1p4ZQle43iW42sfJSIpjJ3Dr606Fhu5YCvrTYP7yflRs/wBpPyrpMYztbQ8U+FGrrFq0+mNIPLlXenPcda9Evo1Yucjmum24PVT+FJj6Vy1MMpu9zZ4nW9jy3WbRWY4weawhP5DGN2GO3Ne37fp+VLt91/KlHC26lfW32PnDWZEW6Rsj060xbtWQfOPzr6S2e6/lRs91/KtlSsrGDqtu9j5z+0qCMsPzr174ZSCTwoWByPtD/wAhXX7B/eX8qMY7j8KcKfK7ic3JWCiiitSAooooAKKKKACiiigAooooAKKKKACiiigAooooAz9Z/wCPOP8A66j+RrLH3a1NZ/484/8ArqP5Gssfdr57M/4vyOGv8YtFFFcBiQW1nFDeSXJJaWVvmc9QvYfQVleFo/KXVEJy4v5Sw78nit1Tg5qlbabHa6pc30bkfaVAdOxYfxflWineEk+thp6NMx77xXpsZu4ba8ihniym94yxLD0xWL4b8U6Ro9lBp2J3kdsyOEG0Mfx6Ctm88C6Zd3stzvljMrFmVCMZPWrmn+EdF06ZJ47UySpyrytuwfX0rsU8KqXLqap01Gxs96a7iNGduijJxT2OWJAwKaSACSQAPWvNsYHN6D4zttbvzZrbPCzAmMsc7gK6Wuc03SbaXxE2p2tmLa2iQomF2+ax6sB6V0ddWIVNS/d6Gk+W/uhRRRXOQFFFFABRRRQAUUUUAIUaRGRWKMykBh1HvXnOoaNoemXTQSXD6hfOeI2kCKp65Zq9IU4PPNcjq3gSPUtVkvUvGiEzbpE2559q7MHVUG1KVkaUpW3Zl6fa+EdLIn1S8hurjORHGpMae3v+NbXhrxWmtXs1mLdYvKGYynQrnFXdN8I6Np+GNsLmQfxzc4+gq9YaPp2lvI9laJCZD8xGc/8A6qqtWpTT3b6f8MOUosuNwaz9bm1KLTmbSYVlucgBWOBjua0TySaTFcKdmnYyR5zqjeKZtfsXn22V1ODHAUP3R3yeavyeCdZ1F1bUdaMrDoDlsfnXWajpsWoT2kzMUe1lEiEfyq2OK7pY2aUeRJfI1dV6WPOtY8ErpOmSXL3rSMCFRAn3mJwBXT+HvC8GhjzxK8k8kYD54A9cfjQPD0k3iaTU7m6kktlIeKBnJUNjrjoMdq3+wFKtiqk4cnNe+/8AkEqkmrXIbq6is7Oa4mbbHEpdj7CvOdW0+4u9FuvEWoBllnlUQxn+CPnGa9GuLWG7RY503oGDbT0bHTPqKo+IdMOr6JcWURCu+ChPTIPes8LWVKS83r6E05crItD8NWGiSTSwF5DMMZfsvpXL39t4t0SJbHTDI9mjMY2gXLYJ6HvXd2yutrEsgw4RQ31xzU3BHOaIYmcZuUve9QVRp3epxPhDRNWGo/2nrHmbkjKoJm3MSfr0/wDr12lKMDpRWVatKtLmYpScndlHWNSTSdKuL113eWvC+p7D86w4/GUEGm2N3dwSsLhcSSxrwrjqMV0d5ZwX9nLaXC7opV2sKpWXhzTrPSpNOeM3EMhJPm88+3pV03RVO01rf8Bx5balXVbDV9VuLO80e8t0gUbgWQNnPcHBrP1651/w7H9rOowXALDcZI8O3Xjr0+lRzeBr2KQjTdcnt4SchCzcfkasab4Gggu1utSu5L6RSCA/Q/XPWuuEqMEryTS6W1NE4pbnTxP5kSSE53KD+lVtW1KHSNPlvbhWZIwDhRyc9Kutycioby0t7+2a3uohLE2Mq3Q15qtze9sYK19TzLTvEGozR/Y9ItmeclvKbbuMKkk4X069TW1aeE4rnXZ4NSlmuCturSyB+TIT0/SuysbCw02IxWdokKnrsHX8TWLBa6hdx3cbl4GuZ23zYwyxDhQvuR/OvSliuZt0/d/M3dS7fLoc/p3hPTNS8QzR26ytp1t8ruW/1j+gI7VtWlz4V0rXI9LsbZUu2ypkVd2D/dz610Nja2+nWiW1tEEjQYAH8/rWanhnT01x9X2EzsdwU/dBxjOPWspYn2l1Nu1tP+CS5825sHoMdK5jxF4sk0XUoLKC0+0SSLuIyc89MetdOTkD2pvlwlxI0Slx0bHI/GuWk4xleSujONk9TBTWLqyWO5127tbCNgSLdfmc/j/hVTTbW5fQtQl0UrH9tmkaHeCMoeOPTvit7VNIsdYWJbyHeIm3KM9fY+1W40SJFSNAiqMBVGAB6Vr7WKj7q1/ArmSWhk+FrG/03R1t9RnMsvOATu2D0zWuKMUDisJyc5OT6kN3dzMmmvLvVJbK0nFutuoMsoXcxJ6AZpIri7tNRis7ucXCTqTFJt2kEdQcdaLm2vLfUJL6wSObzlCywu23OOhB9aLa1vbnUEvr9Y4vKUrFCjbsE9ST61t7vL0tb53L0sanYH1oo7AelFc5AUUUUwCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooopS2AiuP8AUyf7hrqK5e4/1Mn+4a6ivayvaR04fqFFFFeudYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBn6z/x5x/8AXUfyNZY+7WprP/HnH/11H8jWWPu189mf8X5HDX+MWiiiuAxCiiikAUUUUXAKSlooAM8HiiiigQUUUUXGFFFFMAooopXAKKKKYBRRRQAUUUUrgFFFFFwCkpaKLiCiiihMAooooAKKKKBhRRRTAKKKKACiiikAUUUUwCjPHSiikIKKKKBhRRRTAKKKKVwCiiimAcdxmj8MUUUgCiiimAUUUUm7AFFJmii4ri0UAgfe6UyO4gm3CGVHKnDbWzg0XGPoooFFwCiiimAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUpbARXH+pk/wBw11Fcvcf6mT/cNdRXtZXtI6cP1CiiivXOsKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAz9Z/wCPOP8A66j+RrLH3a1NZ/484/8ArqP5Gssfdr57M/4vyOGv8YtFFFcBiFJvRSd23pnk05Blq8/vfAmr6pqVxNJq8EpLEEknKjsMdvpWtGEJ355WKgk92dlNr+kWpKz31srenmgn8s06z1jTtRcrZ3UMxAyVVuR+FcnB8L4o133WpE467EAH61R0TQ0tPH0UWnXPn29uu+SRTkDII2nFdKoYeUZckndK+xpyQadmeinqaKc4w5qC5uIrS3knmYJHGu5iewrz+tjAWaeK2iaWZ0jjTlmY4AqLT9UsdUgaaymWZFbaSMjB/Gs2LTP7dK3mqQkQj5obVzwB6uO5PpUjabp2p6VdWOmSQ26yNtdrYAAN74rflgtG9fwRdlsWbnXdJtB+/vbZOcY8wE/kKtQXVveW6T20iyRPyGU5BrzEeCnvNXaxsbnzkhOJ7jb8in0Hqa9C0azs9MsF0+1nSQwcPhgWB75A6VviKNKnH3ZXZU4RitGaFHAHNHSsPUPEdqrajpqoxmt7Z5DIOgO3p9ea5KcJTdkjOKb2NOy1G01GN3tJ0lVGKMVPQ1j6/wCJnsrtdP0u1N3eAbnUZO0fh3rH8M3X9leE/MgQS3l5MRBEo5Y9M/QUmk+IdE8P/aGuDJe6hK5M8qpkMc8gE9q744ZRnKy5rbI2ULN6XO2gdpIEd1KMyglT2OOlSVy+lePbbVtUhsYtPkjEwIDkjjj0rqO1cVWlOk7TVjKUXHcKgudQs7FN93PFCp6F3xmmajFezadNHp8qxXJX5GboOa82t/DN5q+ozTXl+DBb5Nxck7gMdQCetbYehGpFylKyRcIKSu2emWd/aalbC5s5VkiJI3D2qtresQaJpkl3KjOQQFUdz/SodFXSNP0QNp9xGbVMs8pPfuTUXiryb3wVfTRssiGNXR15B5FRGEfbKLTtclJc9uhrwTJcQRzp92RQw+hGakrO8PyGbw/YOTybdM/gMVellSCJ5ZXCIi7mY9AKxkrScSWtbFbVdWs9HtGubt9qjgAclj6AVlaT4wtb7TLu/nga3htjwxOd3oB7+1Ysk8Ova3bXuoQtJaO5W1gPAZV5Z2z2q/f6ZfeInZ4Y0t7GAZtopBhZm/vEf3fSu9UKcElPfv28jbkitGXtA1DVtSaTUbuOKDT5B+5Q8Nj1z6VurIsi7kKkeqnNeYrZXuuG5+36wWW0ODDEhbP+6oAH6V1XgjSJtN0l5pty/aW3Ijdl7cdiaMTQhFOV7eQVIJanS0UVna5dNHpz2tsC15cqY4FXrkjG72A65rggnKXKjFK7saCuGJAIODg4NQ39/baZaPdXThIkGSf8Peuc8G+GL7RLu5lvJldZVAUIxOT6ml1LUdNur37Vqksf2C3ciGJhnz3HVsdwOnpXQqMfaOMXdLsXyrmstTe0rUYtW0+O8hR0SQEqHGD1q1XMWXxA0ie9isobWSJHIjRyAAOw4HQV04rOtTlTeqtcmUWt0LTd4BCkjJ6DNDzRW8TzTOqRouWZugFcQ/h7VdY8Rxa3u8i285XRHYhxGvt2zjp706VNTTcnZBGKe53XAGay7HX7LUdSuLK13ObcfPIB8mc9AaZr92Qg0+KdYDIuZ5icCKPoT9T0FYieM/DmhxC006zMqrwWjQLn3JPJNaUqDnG6TbZUYNrRHYkYNFVdP1GDVrKO9t8+XKMgHqParNcrvF2Zm9AZ1jUsxAVeSScCmW13a3alreeKVQcExuGAP4VxniK9uPFGsjQtNbECNid16E98+w/nT7XUtL8KPPZ6bpt5eTg7ZXCnBYV2fVXyr+Z9PLzNfZ6eZq6n4vstO1uPS3hlZ3ZVZx0XcePrXQcbQRXnb3Wtanqi6mPDrvInEfmqQqc9QDjmuy0WXVZbEtq0McUu75VQ9veniKEacE1a/XUJwSRo0lLUGo3YsNJuLwrnyI2fHrgVxRXM7IyWpQ1nXPsCG3srd7u+K7hFGCdo9Til8N3epX1h52qWwgkLnauCpK+4PSuG0Wz1/UnaeHVI7Rr1i53yhXk56gdcVf1fwhrGm6dLqL63LPLCBIQHb8wc16ksPSivZuSudDhFe7fU7+iqukztdaVaTudzS26ux9SVq12rzGrOxgwopKWgAooooAKgvbj7JZT3G0t5UZfaOpwKnpCAQQeQeKXUDy9viPq32gyCKARg52YPT61vwfFLQvsHmXMUouRwYUGc/jVP4hWulWVqmnWGnQrfX8gEZRcEc8mr2gfBmGHThd6reCOQruJzgLX0FPD0MRBS5bHZGEJq9rHOeIPiDeatYtbafYPbI5+aQv8AMR7elXfC/jXw5pVulpLYy2MjgeZIx3Bj6k1Z1j4dT2NxCLaUTwznEbocg/SteH4N2NzB5d3ej7Vt3bFbla3eEouHIlZFulG1jYvPEGk22mPe/aYWQLldr5LemKyfCHiG41q3kW7t5Elj53lMKwJ4xXGz+FB4F8YWcWrKtzp877UduinsTXq7KikCNVVQOAowK8fE0YYePJa9+py1IqGgEYpKKK4UZBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRSlsBFcf6mT/AHDXUVy9x/qZP9w11Fe1le0jpw/UKKKK9c6wooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDP1n/AI84/wDrqP5GssfdrU1n/jzj/wCuo/kayx92vnsz/i/I4a/xi0UUVwGJj+KtQk07w/cTROUkbEasDyM//WzXBWF1r2naQ13ZeYsF3JhpEXc24fy612nji3efwzMUGfKdXP0B/wDr1S8A6tbT6YdM8wLcROWCngsp9K9PDz5MI5KN9dTem7U72OWbTPE2qOBPDfShv+exIH612OjWB8K6NH9p8tZJ51WRhyFB4AzXUeW3pWP4tt47nwxeQSSpG4Xem5gORzWTxcq7VOStG/QTqOdovY1s55rI8T6dfalp8UVhMkcscgk+focdKreCEkTwxbmXd87My7vTNbl1F59vNFuK+YhXcOoyMVyu9Grp0Zl8Mjze3i1zxBqE9pLqzvDCds0yyYjA79MA10y2LxWI0DQ3Kwgf6Re9dueuD3Y+3SsKXwpZaXA0ep+IFigJJ8qPPzf8B/8ArV12nW9pf+F/s2kyOkDwtHE/II6jJ/GvRxNVe64bemnqb1JbW2Ei/s7w1potIJIUKDrLIFyT3Y1m+FNES0u7zU01CG8+0nrD0HOTmuM1Dw5Pbapa2T3MNxLNJtIifcy89x2r1DS9MstJ05LaxxtU/Mc5LH1NZ10qVN2ldyFNcsdHuXR/qyPeuDtF8/wz4m1NlG+eV1DY5x6frXd5AQjvmvM7qbWbLSdT0eO22WsMzyTTEdVJGAD78VlglzXXmiaWpu+C3gNjbyJEgFvEVmuX4wSc7R/U1Zu/Cfh9LabUY7M3QAMm2KQsG+mKdp+j2+o+BbaxZjGJYQ+5ePm6gn1ribPxHqXhtLvTEkikjIKAg7gp6ZUiumMJVak3TlZ328rlpOUnys7rwbPY3+mPd2ulwWRDFPkAyQPfrW/XPeEtS0VdKt7Kyu18xU5ST5WZj1OO/wCFdB1Fefibqo9GvUxn8TMLxbJqg0gxaZbySNKdshj5ZV9q5pLu+d7XRtQlj0SyMRyikbmH+0T612uqx6pLZlNJljinJ5dxnA9vevOpNOtH8UxR6rqa3KYL3MwYgAjtn64HFd2C5XSafTXu/wDI1pW5bG/qmmWGneBJRp1y00Mrh/MJ+/zj8q0LZfO+GTD73+hsfyBP9K0LZtF8QaSba2xLaR4jKBSoGOmPyqzfwQ23h26ghRVijt3AUDgDaawlWekGne9yXLo+5n+DpPM8K2Jz0Qr+TEVq3dpFfWsltOMxyrtYA44rM8JQtB4XsUYYJQt+ZJ/rWzXNWdqsmu7M5fEzmb0QWfjPSYnRVhNq0Ua4+UH0qG58VarF4gmsjawQ2sUg3TzAgKvrn3rXuW0vUNQ3SyhZNLcMZCwUKxHQk0viFkbw7dPskmjePGIOWOe4rpU05RUo+X/BNL6pNGYqxah4puLrSZVk3WbLJLGflD5+U5HerPh65FujadeaxHeXqsTt35Kj0yetY+kX1vp/h/ZDpuoRWr5Mtwq5Zj7Y6D3rQ8N6X4dunGr6bayRyKSuJCflOOcfga0qw5YSUtlotvxHJWTudOOEJ5615fL4s1SXXbuTTl3PK+yPbHvYKOgH1616jkCIjPNeeeFoNasNZeKHYum21y6XDNtH59/TFRgnBKUmk9OoqVldsdpF5r8evRWerz3EUeoIV/eHleOo9D2/Gti+8M+H9W1VYWvgJYIwn2aOQDao9u1O1R4dS8XaSlrKkvlbpHKHIAHv9aLHweLTxU+reePKLNIqc5DHr+HJrWVVP378rt0KcuuxneMvC2naZo4vbCEQyWzjlWJ3AnvXa2rl4lc9SgP6Vg+NQbjTY9Pj5kvLhI1A9M8n8K6GLCn0GMVy1ZuVKPM7vUzk24q5w/jnX5bG/tLSJVbyz5zK4yGOeMj9ax7jV/Fs9uNSdrmO3hIbdt2oe3TuK1fFltqf/CVW8+kgG5ntyqZx2POM961tbvgvguSG/ni+2+QqyxqwLb+Ow9676c4QpwSinf7zaLSitBL600nVNGhl1LUFtnv9khYuF+bH3RnsM1JF4D0JLFohEZGkBAlZ8sPcdqoah4Nl1PSdMUSiKe2hVX35xg8n8Qa6pUh03TI03/ubWLBY9lUdfyFcs6jjFKnN7vT8jNystGc74CDxaPNbOc+RcslaHi7UrnTtHkazjeSeU+UmxSSpPfioPBsMiaF58ilWuZnmweuCa3jyxrKtJKu5NX1Jk/fbOV+G8UQ0a4cQMkxkKu7dWI7D6Vb8T3GoQLEbXULawiJ+aSQ/MT6CpfBSCPQ9h+8s0gf67jWT44vtNt7y0judPF7cNkgF2GF/D1NbP95i3pcreqc7fXjSNi78V3Myg8rAjY/oK9G0aSGTQrNoJJpIvL+V5vvt2ya4iKfUhg2PhCFFzwZICT+bCut8NaxNrWk+dPAsLxuYyq9OP5VrjE/Zqy29P0LqrQ1qo6+hk8Nagg6mByB68Gr1NlETxiGRl/e5UKT97joK8ym7STOdaM8w0+0WzvNFvbWxlmV9pZ93DPnBA9MY6V3vil8eH70Abmki8tAO7NwB+tcrceHtTsLCYx6ysOmQOQhVuQpPt7mjQ5xCXN1qyTW1pKWgaQnYGPRj3J7gV61aKqtTTvb1OiS5tb7HbadbCz062tsj9zCqfkMVY7Vzeh22pXN99vXXlvrPncijjPpjtXR15tWPLLe5hJWZT1XVbbRrJru6cqgIA2jJJ9BS6Xq9trNmt1auWQnBDDBU+lGp6Taa1ZNZ3ikxkhgV4II6EU7TNGtNEsltbRWCZySxySfU0L2fsv71wXLy+ZaooorMQUnrS0nrUsR5vrepRj4sWQuuYrcKgB7E16b478OXfizwwtrptysbFhIFJwrj0Jrx74q2T2niiO+ThZkBDD+8K0PD3xP1yxsxbsRKoGAWI4r6vDtexjbsejT+FHp3hbSv+ES8N6bpmrzpLP55ZQGyI89hnsKxYfh5rEfxHbXzfr9kMxlyGO4j+7j0ridR8V6pqk4nnkYkcjnpWhZfEvX90Omwp5skrBEO7mtrl3Nn45XduNJtbfcvneYCPUVo+Gbx7/w5Y3MhJd4V3E9ziuO+LWh3cK6VPcOz3E52bc5+Y13OkWX9naRaWQOfJhVDj1Ary80a9nFdTmxGyLtFA6UV4a2OUKKKKYBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFKWwEVx/qZP9w11Fcvcf6mT/AHDXUV7WV7SOnD9Qooor1zrCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAM/Wf+POP/AK6j+RrLH3a1NZ/484/+uo/kayx92vnsz/i/I4a/xi0UUVwGIbI5FaOZQyOpDKRkEVw+q/D8/aDcaRcCPJyI5P4foa7ig1rRrzo6wZUZuOx52/hjxeQF+3sw9PtTYFTWPgG+nuVk1W7UoD8wRizEfU13tKK6fr9a1lZfIv20hscMUESQwoEjRQqqOwFRXtu91ZywRzPA0i7RInVfcVPRXD1uZHL2XgDSYn33jy3TZycnAP5VY8Q6bqb2MFvobpDDHw0PChh2roKSt3iKjmpSd7dy+eTd2edL4L8QXJ3SzW8APZTj9AK6rw14cGgwyb5vNmlxuIGAAK3KKuri6tWPK9hyqSkrBVDX7V77w7fWsQLSyRHYvqRyB+lX6K5YPkkpLoZrR3Mmx0dW0W0s74u6xwqrRA7VzjocdamufD2i3VmLWSwiWMdNihSp9QRWgKKv2k73THzM4+X4d2YuVe3vJUiz8ykZb2wa6y2iaC2SJ5WlZFCl36tjuakoqqtapVSU3ew5SctyjrFteXemvBYzJFKxGS4yCO4rnoPAxubgXGtahJdMBwi8Aew9B9K6+inTrzpx5YaApuKsiK2s7PT7ZbexgWGNf4VGK5oW3ifUL+8srudY9NZim/aAzJ7Y9RxXVUnFTCq4tvd+YlJoSONIo1jjG1EUKo9AKdRRWJJx9p4Xu117UDdBZrC83FiW5OTkfiKhW38Q+Ey8OnQHULFzuVQMsp+grtulHy9Tmuz63Nv3lddjX2j6nFLr3jC+xFbaSbUn/lpIhGPzroPDukNo+meTLJ5k0jl5COmT6VrHbjgH86SoqVuaPLGKSE53VkrB2wa5fXfCDandy3FvdmASrl4+zuBwa6ijFZ0qkqUuaD1JjJxd0Yfhfw6uhwGSd/NupFCsw5Cr/dHtS+K9Q1LT9Pjk0pN8zyhNuwsefQCtujgjkU/auVTnnqPmvK7MXSrG9uZ49T1kr9pVMRQp92LPX8TW0OKKKmc3N3ZLdzK13RRrFqixzGCeJt0cq9V9f0rD0nwObTVDPeXAngjIdE5+dvUj2NdjRWsMRUhTcIvQpTko2Qk7sIHMZAcKcEjjNcfpD6/4ltGj1UC3sWb59qFWlX+6PQe9djnjFHHaop1OROy179gUrIaiJEixxqFRAAoA4AHanUUlZEGfpVnNp9/f9DbXEomT2Y/erM8WaDcajPbajp2Ptlq4Kgnggc/zro6UcVrGtKM+dblKTTucBcar45uw8MdnJCGOBti27fxJ/Wuy0bT00zR7a0UYdEBk93xyfzq6Qp9aKurX548qikvIqU7qyQVzeq22py+MtKmiV2so87yPurwc5+tdJQMZ75rKlU9m7rsTF8rOEvbW98MyXMC6eb/Rbg5MXOU/Ec1FH4s0b7E2nWHh13EnWE/Nk+/U16Dlccg0o8of8sxn1rqWJjJe/G79S1UT3RzvgrTJ9L065a4g+zm5k3rCDnyx6V0HagcUVy1JupJyfUiT5ncxPFkOqzaKyaSzibeNwjbDFe4BqTwvHqcWiRR6qzGcE4DnLBewJrX470VSqv2fs7dR83u8oUUUVmSFFFFKwGR4p8PW3ibTWtpPlkBzE+OVNeJanpupeH7trW8hdCD8rfwsPY19CDgg1HdWllexmO7tUnjPVZFBFd2GxkqHuvVGtOq4aHzx/acmMZNLZapd2upW93bZM0ThkGM5PpXtU3gLwtNIXOlqmT0RiBV7T/DWg6WQ1npkUbj+MjLfma9B5lStombe3iZdoNW8XXlnq3iC3FtFaDdb2/ct/eNdO5BbK9KHKnG0YxSV49atKtLmkc0puTuwFFFFZEhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRSlsBFcf6mT/cNdRXL3H+pk/wBw11Fe1le0jpw/UKKKK9c6wooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDP1n/jzj/wCuo/kayx92tTWf+POP/rqP5Gssfdr57M/4vyOGv8YtFFFcBiFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUWAKKKKLAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRRYAooooAKKKKVgCiiimAUUUUAFFFFABRRRQAUYoopWAKKKKLIAooopgFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRSlsBFcf6mT/cNdRXL3H+pk/wBw11Fe1le0jpw/UKKKK9c6wooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDP1n/jzj/wCuo/kayx92tTWf+POP/rqP5Gssfdr57M/4vyOGv8YtFFFcBiFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRSlsBFcf6mT/cNdRXL3H+pk/3DXUV7WV7SOnD9Qooor1zrCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAM/Wf+POP/rqP5GssfdrU1n/jzj/66j+RrLH3a+ezP+L8jhr/ABi0UUVwGIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFKWwEVx/qZP9w11Fcvcf6mT/cNdRXtZXtI6cP1CiiivXOsKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAz9Z/484/+uo/kayx92tTWf8Ajzj/AOuo/kayx92vnsz/AIvyOGv8YtFFFcBiFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRSlsBFcf6mT/AHDXUVy9x/qZP9w11Fe1le0jpw/UKKKK9c6wooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDP1n/AI84/wDrqP5GssfdrV1hSbEMOiOCfpyP61lDpXz2Z/xfkcNf4xaKMGjBrzrmIUUYNGDRcAoowaMGi4BRRg0YNFwCijBowaLgFFGDRg0XAKKMGjBouAUUYNGDRcAoowaMGi4BRRg0YNFwCijBowaLgFFGDRg0XAKKMGjBouAUUYNGDRcAoowaMGi4BRRg0YNFwCijBowaLgFFGDRg0XAKKMGjBouAUUYNGDRcAoowaMGi4BRRg0YNFwCijBowaLgFFGDRg0XAKKMGjBouAUUYNGDRcAoowaMGi4BRRg0YNFwCijBowaLgFFGDRg0XAKKMGjBouAUUYNGDRcAoowaMGi4BRRg0YNFwCijBowaLgFFGDRg0XAKKMGjBouAUUYNGDRcAoowaMGi4BRRg0YNFwCijBowaLgFFGDRzSb0FciuP9TJ/uGuoNcxKpkHlqMs/yj6niunPWvcyv4ZHXh+oUUUV651BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFADHUSKUcBlIwQe9ZUukToT9ndWTsGPI/GtelrGtQp1laaIlTjLcw/7Mv8A+5H/AN9//Wo/sy//ALkf/ff/ANatyiub+z6HmZ+wgYf9mX/9yP8A77/+tR/Zl/8A3I/++/8A61blFH9n0PMPYQMP+zL/APuR/wDff/1qP7Mv/wC5H/33/wDWrcoo/s+h5h7CBh/2Zf8A9yP/AL7/APrUf2Zf/wByP/vv/wCtW5RR/Z9DzD2EDD/sy/8A7kf/AH3/APWo/sy//uR/99//AFq3KKP7PoeYewgYf9mX/wDcj/77/wDrUf2Zf/3I/wDvv/61blFH9n0PMPYQMP8Asy//ALkf/ff/ANaj+zL/APuR/wDff/1q3KKP7PoeYewgYf8AZl//AHI/++//AK1H9mX/APcj/wC+/wD61blFH9n0PMPYQMP+zL/+5H/33/8AWo/sy/8A7kf/AH3/APWrcoo/s+h5h7CBh/2Zf/3I/wDvv/61H9mX/wDcj/77/wDrVuUUf2fQ8w9hAw/7Mv8A+5H/AN9//Wo/sy//ALkf/ff/ANatyij+z6HmHsIGH/Zl/wD3I/8Avv8A+tR/Zl//AHI/++//AK1blFH9n0PMPYQMP+zL/wDuR/8Aff8A9aj+zL/+5H/33/8AWrcoo/s+h5h7CBh/2Zf/ANyP/vv/AOtR/Zl//cj/AO+//rVuUUf2fQ8w9hAw/wCzL/8AuR/99/8A1qP7Mv8A+5H/AN9//Wrcoo/s+h5h7CBh/wBmX/8Acj/77/8ArUf2Zf8A9yP/AL7/APrVuUUf2fQ8w9hAw/7Mv/7kf/ff/wBaj+zL/wDuR/8Aff8A9atyij+z6HmHsIGH/Zl//cj/AO+//rUf2Zf/ANyP/vv/AOtW5RR/Z9DzD2EDD/sy/wD7kf8A33/9aj+zL/8AuR/99/8A1q3KKP7PoeYewgYf9mX/APcj/wC+/wD61H9mX/8Acj/77/8ArVuUUf2fQ8w9hAw/7Mv/AO5H/wB9/wD1qP7Mv/7kf/ff/wBatyij+z6HmHsIGH/Zl/8A3I/++/8A61H9mX/9yP8A77/+tW5RR/Z9DzD2EDD/ALMv/wC5H/33/wDWo/sy/wD7kf8A33/9atyij+z6HmHsIGH/AGZf/wByP/vv/wCtR/Zl/wD3I/8Avv8A+tW5RR/Z9DzD2EDD/sy//uR/99//AFqP7Mv/AO5H/wB9/wD1q3KKP7PoeYewgYf9mX/9yP8A77/+tR/Zl/8A3I/++/8A61blFH9n0PMPYQMP+zL/APuR/wDff/1qP7Mv/wC5H/33/wDWrcoo/s+h5h7CBh/2Zf8A9yP/AL7/APrUf2Zf/wByP/vv/wCtW5RR/Z9DzD2EDD/sy/8A7kf/AH3/APWo/sy//uR/99//AFq3KKP7PoeYewgYf9mX/wDcj/77/wDrUf2Zf/3I/wDvv/61blFH9n0PMPYQMP8Asy//ALkf/ff/ANaj+zL/APuR/wDff/1q3KKP7PoeYewgYf8AZl//AHI/++//AK1H9mX/APcj/wC+/wD61blFH9n0PMPYQMP+zL/+5H/33/8AWo/sy/8A7kf/AH3/APWrcoo/s+h5h7CBh/2Zf/3I/wDvv/61H9mX/wDcj/77/wDrVuUUf2fQ8w9hAw/7Mv8A+5H/AN9//Wo/sy//ALkf/ff/ANatyij+z6HmHsIGH/Zl/wD3I/8Avv8A+tR/Zl//AHI/++//AK1blFH9n0PMPYQMP+zL/wDuR/8Aff8A9aj+zL/+5H/33/8AWrcoo/s+h5h7CBh/2Zf/ANyP/vv/AOtR/Zl//cj/AO+//rVuUUf2fQ8w9hAw/wCzL/8AuR/99/8A1qP7Mv8A+5H/AN9//Wrcoo/s+h5h7CBh/wBmX/8Acj/77/8ArUf2Zf8A9yP/AL7/APrVuUUf2fQ8w9hAw/7Mv/7kf/ff/wBaj+zL/wDuR/8Aff8A9atyij+z6HmHsIGH/Zl//cj/AO+//rUf2Xf/ANyP/vv/AOtW5SUf2fQ8w9hAz7TTTBKJpmDyL90DotaAORS0V2U6cKceWKNYxUVZBRRRVlBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAR+Z/wBM5P8AvmjzP+mcn/fNW8UYoAqeZ/0zk/75o8z/AKZyf981bxRigCp5n/TOT/vmjzP+mcn/AHzVvFGKAKnmf9M5P++aPM/6Zyf981bxRigCp5n/AEzk/wC+aPM/6Zyf981bxRigCp5n/TOT/vmjzP8ApnJ/3zVvFGKAKnmf9M5P++aPM/6Zyf8AfNW8UYoAqeZ/0zk/75o8z/pnJ/3zVvFGKAKnmf8ATOT/AL5o8z/pnJ/3zVvFGKAKnmf9M5P++aPM/wCmcn/fNW8UYoAqeZ/0zk/75o8z/pnJ/wB81bxRigCp5n/TOT/vmjzP+mcn/fNW8UYoAqeZ/wBM5P8AvmjzP+mcn/fNW8UYoAqeZ/0zk/75o8z/AKZyf981bxRigCp5n/TOT/vmjzP+mcn/AHzVvFGKAKnmf9M5P++aPM/6Zyf981bxRigCp5n/AEzk/wC+aPM/6Zyf981bxRigCp5n/TOT/vmjzP8ApnJ/3zVvFGKAKnmf9M5P++aPM/6Zyf8AfNW8UYoAqeZ/0zk/75o8z/pnJ/3zVvFGKAKnmf8ATOT/AL5o8z/pnJ/3zVvFGKAKnmf9M5P++aPM/wCmcn/fNW8UYoAqeZ/0zk/75o8z/pnJ/wB81bxRigCp5n/TOT/vmjzP+mcn/fNW8UYoAqeZ/wBM5P8AvmjzP+mcn/fNW8UYoAqeZ/0zk/75o8z/AKZyf981bxRigCp5n/TOT/vmjzP+mcn/AHzVvFGKAKnmf9M5P++aPM/6Zyf981bxRigCp5n/AEzk/wC+aPM/6Zyf981bxRigCp5n/TOT/vmjzP8ApnJ/3zVvFGKAKnmf9M5P++aPM/6Zyf8AfNW8UYoAqeZ/0zk/75o8z/pnJ/3zVvFGKAKnmf8ATOT/AL5o8z/pnJ/3zVvFGKAKnmf9M5P++aPM/wCmcn/fNW8UYoAqeZ/0zk/75o8z/pnJ/wB81bxRigCp5n/TOT/vmjzP+mcn/fNW8UYoAqeZ/wBM5P8AvmjzP+mcn/fNW8UYoAqeZ/0zk/75o8z/AKZyf981bxRigCp5n/TOT/vmjzP+mcn/AHzVvFGKAKnmf9M5P++aPM/6Zyf981bxRigCp5n/AEzk/wC+aPM/6Zyf981bxRigCp5n/TOT/vmjzP8ApnJ/3zVvFGKAKnmf9M5P++aPM/6Zyf8AfNW8UYoAqeZ/0zk/75o8z/pnJ/3zVvFGKAKnmf8ATOT/AL5o8z/pnJ/3zVvFGKAKnmf9M5P++aPM/wCmcn/fNW8UYoAqeZ/0zk/75o8z/pnJ/wB81bxRigCp5n/TOT/vmjzP+mcn/fNW8UYoAqeZ/wBM5P8AvmjzP+mcn/fNW8UYoAqeZ/0zk/75o8z/AKZyf981bxRigCp5n/TOT/vmjzP+mcn/AHzVvFGKAKnmf9M5P++aPM/6Zyf981bxRigCp5n/AEzk/wC+aPM/6Zyf981bxRigCp5n/TOT/vmjzP8ApnJ/3zVvFGKAKnmf9M5P++aPM/6Zyf8AfNW8UYoAqeZ/0zk/75o8z/pnJ/3zVvFGKAKnmf8ATOT/AL5o8z/pnJ/3zVvFGKAKnmf9M5P++aPM/wCmcn/fNW8UYoAqeZ/0zk/75o8z/pnJ/wB81bxRigCp5n/TOT/vmjzP+mcn/fNW8UYoAKKKKACiiigApKWkNABmjNNkkihiMkrhFUZLMcAD61jP4lhndo9KtZtRcHBMS4Qf8CPFIVzbzRmsPzfFM/K2dnbD0dy5/SjyvFIGRPYP7eWw/rQFzczRmsP7d4htObrSI7hB1a3l5/I1ZsvEGnXkv2cyNBcdPImXY35HrQFzTpaOO1FMYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSZooGOc0hBmjNZl94g06zm+ziRp7np5EK72/TpVb7d4huubbSI7dD0a4l5/IUBc3M0ZrDEXik8mewT28tj/WgSeKYOWs7S5X0Ryh/WgLm5mjNYqeJYYXEeq202nOTgGVcof+BDitmKSKaMSROHRhkMpyD+NADqKKKYwooooAKKKKACiiigApM0HpQMc5pCDNGazb7xBp1jL5BlMtweBBCN75+g6VV+3+ILo5tdHSBD0a5kwfyFAXNzNGaw/K8Utz59hH7eWx/rRv8Uw8ta2dyPRWKH9aAubmaM1iJ4ljt3EerWk2nseA0g3If+BCtmKWGeISwusiMMhlOQfxoC4+iiimMKKKKACiiigAooooAKQ0tIaACqGqatDpcSmQGSSQ4jiTlpD2AFWL68h0+ylup22xxrkn19qyNFsJruf+2tRU+fKP3Mbf8sE9Pqe9IkZFo13q8n2nXXzFnKWaN8i/7x7mt+GGK3jEUMaxIowFQYAp2SOnApaBoXcfWjcfWkopjAk+p/OqOo6TY6rFsu7dZMfdboy/Q1dozikI50T6h4cfF5I95pxOBMeXh/3vUe9b8MyXEKTRMro4yGU5BpzossbI6hlYYIIzkelc7bhvDeqpZsx/s67b9zn/AJYv/d+hoEdIKKOtFMoKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKTmlpBSERzTJbwvNKyqiDJZjgCsEzah4jbFnI9lp3QzDiSb/d9B70lwG8Saq9mrH+zrRv32DgTP8A3foO9dFGixRqkahFUYAAwAPSgRU07SLHS4tlpbrHn7zYyzfU1dyR3P50gpaZQu4+tG4+tJRQBHLDHcRtFNGsqNwVcZB/OsGXRrrR3NzobkRZ3PZu3yN/u+hroaM568ikIo6Xq0OqQsYwUkjOJIn4aM9wRV4Vg61YTWc39tacv7+Ifvox/wAt09PqK17C8h1CyiuoG3JKu4H09qARYooopjCiiigApOaWkBwemaQhk0yW8LzSsqIgyWY4ArnzPqHiNsWUj2en5wZwMPMP9n0HvROG8S6o9oGP9m2r4lwcec4/h+groo0WJFSNQiqMAAYAHpQIp6do9hpUe20t1Rj95zyzfU1eBI7n86QUtMoN7DvRuY965/WvGNtod/8AY5bOSZggcsrAdc1vA55pCGyRRzxtFMiyI3BVhkEVhS6LdaTIbnQn2JnL2bt8j/T0Nb9OBz1oQFDStWh1SFiimOWM4kifhkPoRV4Vha3p81tMNZ05T9phH72Mf8tk9MevpWtp97DqFjFdQHKSLke3tQCLFFFFMYUUUUAFFFFABSHOM+lLSr3HrQBz2pD+1fENtpp5t7UC4nHZj/CD/OuhbGcjvXP+GwLm41PUTz510yKf9leBW8OlISFptOpNp9KGDFAIIyO9cn48fU47BJbRmW3RgZfLyGBzwcjtUXjfWtX0u7tha/uoM7t4/jb0PtXQ6TdweINFWZkBjnQrIh7HoRQIo+FPEH9s6b5cx/0qHAf/AGh2at2vNNNZvD3jUWhY7PN8k+6n7p/lXpfOwE96GCEqrqunx6ppU1pIQPMHyt3Vuxq3RQMyvDt/JfaWgnz9ogYwzDvuXitXvWFpg+yeLNSthwk0a3AHv0P8q3TyTQCFooopjCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKyfEN/JY6U/kf8fEzCGEd9zcVrDqKwdTH2vxXp1sRlYI2uCPfoKQmaWlafHpmlQ2ceCYx8zf3m7mrVLRkbWz3oAzNV8RWGiusd1I+9+diLk49TVyzvoNRtlubaTzI36GvN/GPmJ4muTNkBwpjz/dx/jmuj8ACX+y7h2z5bSjZ+XNOwk9TrKKDjNVtQWV9Oukgz5rQsI8f3sHH61IzOPi/Sft/wBi+0tu3bd+35M+ma2gM14mzDled3TGOc+leyaaJU0y3SfPnCFA+f72Bn9abQk7llMZye1c9po/snxBc6aOLe6BuIB2U/xAfzroKwfEo+zXGmagODDdLGx/2W4NAG92zQKV+oHpSChDQtFFFMYVkeIr6Sy0plg/4+LhhDCP9puK1x1FYOoj7V4t0+3IysEbTke/QfzpCZp6Vp8WmaXDZx4PlDDN3Y9zVukFKAW6UDCil2N6UbG9KYHm/jr/AJGD/tgv8zXovavO/HQI8Q8/88F/ma9G2NjpQStwpO1O2N6UFSByKChExnOelc9p4/snxFcaeOLe7BnhHZT/ABAfzroKwfEo+zS6bqA4MF0qMf8AZbg0iTe7Z9aBSv2HpSChDQtFFFMYUUUUAFKv3vwpKVeuaAMDwbz4chYjlndj9dxrdHSsHwn+6srqzPDW13In4Z4Nbw6UhIWuF8TeK9RtNZS1tY3hSBwWDD/W/wD1q7qqt3ptjfTQTXFuryW7bkb3pgzK8dQRy+G7l2xuiZWX65x/WqXw2lY6TdRH7qS5H4j/AOtVT4hawFjTS4wSzEPL9OwrZ8DWD2GgR+au2Sc+Yc+nb/PvQLqch47/ANH8VmWP72xH/EE/4CvTiP3a15jrP/E48d+VH8ymdYsj0Xqf516bnMY9qQIQUtJnFGaCjFxjxzDj+KybP4MK2RyKxLY+f42uHXpb2gQ/UnP+FbmMEiglC0UUUygooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAEPQ1igZ8cT5H3bNcf8AfRrbAzxWFcnyPGtu7dLi0KA+4OaQmblAGeMikrD8V6pfaTp0dzZCP7+19657cUAal7o2namF+328cxT7pPUfjU8VrDbRLDbokcSDCqvAFecDxzreSP8ARuP+mZ/xpf8AhOdb/wCnX/v2f8adhXPSdnuKNh9RXm3/AAnGt/8ATt/37P8AjR/wnGt/9O3/AH7P+NFgud6dA0j7d9uFlF9ozu347+uPX3q5txzkV5qfHOtgE/6L/wB+z/jWr4a8Tavq+rx28wg8naWfahBx+frilYEztawfGfHhuZh1V0I+u6t3NYPi397Y2tmPvXN3Gn4Z5NMb2N+T7/4CkFOfk5popIELRRRTGIfun6VigZ8cT5/hslx/30a2wM8VhXJ+z+NbZ26XFqyZ9wc/40hM2657xdrl7odrbyWYTdK5Vi654ArogKUY/iGaAPMv+Fg6562//fs/40f8LB1z1t/+/Z/xr0/5P7lGU/uUxWZ45qOrXWsXQurrZ5hUJ8gwMCtX/hYGuA9bf/v2f8am8d4/4SDgY/cL/M16PuTH3KBI8x/4WDrnrb/9+z/jWl4e8Zatqet29nceSYpSQ21CDwCfX2rvf3f9ykOzHCYNA7MSsHxoP+KbmI5YOhUep3Vu5rB8WfvrO0shy1zdxr+GeTQN7G/J9/8AAUgpz8nNNFJAhaKKKYwooooAKCcKfcUUhoAwIz/Zvi2WMnEWooGU/wDTReD+ldARjiszXNNbUbINC/l3NuwkgfPRh/jTtG1ZdVtC7r5dxGdk8R6o46ikJGjTaWjFAblO/wBJsdVmgku4FdoWyp/ofUVneKfESaLYNHCwN3KMRqOq/wC1W70rL1jQLLW1T7UpDRnIdeuO4+lAHNeBNHeSV9XnU4X5Yie57mu5zxTIIo7a2S3hjVIoxhVHYU6gQUk0kcFu88rhUjBZmPQAd6d71z+sTnV74aFbP+6OGvHB+6v93PqaEMk8Lo8kFxqkqkPfTGQA9Qg4UflW4TyabHEsMSxIoVUUKqjsB0FOxQCQtFFFMYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAAODWF4oR44INUiUl7GYSEDuh4YflW7UbxrNE8TqGRwVZT3B60hMIZEnt0njcMkgDKR3BqtqunrqmlXFo2AXX5SezDpWXo87aRenQrl8xDLWbk/eX+79RXQg4HFAjxaSKa3uZYZ4/LkjbaynsRSV6Z4g8LwayDPERDdAY344b2NcJeeGtcsS3mWTuoP34xuH6VVxbGdRSMkyEq42sOoK4qza6Vqt62Laylkz3CHH50BcqtnY2PSu/8BaU8FhJqM6bXnGIwf7vr+NVNB8DyhhcavtwORApzn6mu3XCoEVQFAwAB0FK40hVGTXPy/8AEy8WRRj5otOjLN/10YYH6Ve1nVl0q03ovmXMh2QRDq7noKTQtNbT7EmZvMubhvMnfPVjSA0s5AoFGKWgYUUUUxgODWF4oSRLWHUoVJksZhLgd06MPyrdpjxrLG0bqGVgQwPcUhMS3ljuLZLiJtySKGUjuDUlc9pEzaNfnQ7hswHLWbk/eXqVz6iug7ZoC4tFIKWmM848df8AIwf9sF/ma9F7VxPi3QNX1LWvPsrMyxeUqhgwHPPqa7Ye9BKHUUlApXGKoya59z/aXixEU5h06Mlj28xhgfpV7WdVGlWe+NfMuZDsgiHJdz0FGh6YdOsf3r+Zczt5k7/3nPWgDRzkCgUYpaACiiimMKKKKACkNLRQAlYmpaZcQXw1TSgBcYxLD0WcDsff0rcpPakIz9K1q21RWRMx3EfEkEnDofpWjWZqWgWuosJxut7pfu3EJw4/xqosmv6YNssUeqRL/FGdkn4jpQBvUlYn/CXWkPF3YXtq3fzITj8+9H/Ca6IeFmZz6LEc0Bc26O1YZ8SyXQ26fot7MT0Z08tfzNNfS9X1fjULwW1uetvbHkj0LUALfa1Jd3DadowEs44kmHKQ/j3PtV7SNLi0u02KTJK53yyty0jepNWLPT7XTrcQWkCRRjsvf3PrVjrQFgzmiiimMKKKieeONtrNg0AS0VD9

以上是关于练习:微信好友分析的主要内容,如果未能解决你的问题,请参考以下文章

python 实现微信自动回复和好友签名分析

基于Python的微信好友男女比例,区域排名,签名情感分析

初出茅庐-----微信好友分析与微信机器人

Python分析微信好友性别比例和省份城市分布比例

使用 python 进行微信好友分析

使用 python 进行微信好友分析