LeetCode 208. Implement Trie (Prefix Tree)

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了LeetCode 208. Implement Trie (Prefix Tree)相关的知识,希望对你有一定的参考价值。

Implement a trie with insertsearch, and startsWith methods.

Note:
You may assume that all inputs are consist of lowercase letters a-z.

这道题让我们实现一个重要但又有些复杂的数据结构-字典树, 又称前缀树或单词查找树,详细介绍可以参见网友董的博客,例如,一个保存了8个键的trie结构,"A", "to", "tea", "ted", "ten", "i", "in", and "inn".如下图所示:

 技术分享

 

字典树主要有如下三点性质:

1. 根节点不包含字符,除根节点意外每个节点只包含一个字符。

2. 从根节点到某一个节点,路径上经过的字符连接起来,为该节点对应的字符串。

3. 每个节点的所有子节点包含的字符串不相同。

 

字母树的插入(Insert)、删除( Delete)和查找(Find)都非常简单,用一个一重循环即可,即第i 次循环找到前i 个字母所对应的子树,然后进行相应的操作。实现这棵字母树,我们用最常见的数组保存(静态开辟内存)即可,当然也可以开动态的指针类型(动态开辟内存)。至于结点对儿子的指向,一般有三种方法:

1、对每个结点开一个字母集大小的数组,对应的下标是儿子所表示的字母,内容则是这个儿子对应在大数组上的位置,即标号;

2、对每个结点挂一个链表,按一定顺序记录每个儿子是谁;

3、使用左儿子右兄弟表示法记录这棵树。

两种方法,各有特点。第一种易实现,但实际的空间要求较大;第二种,空间要求最小,但相对费时且不易写。

 

1.我们先来看第一种实现方法,这种方法实现起来简单直观,字母的字典树每个节点要定义一个大小为26的子节点指针数组,然后用一个标志符用来记录到当前位置为止是否为一个词,初始化的时候讲26个子节点都赋为空。那么insert操作只需要对于要插入的字符串的每一个字符算出其的位置,然后找是否存在这个子节点,若不存在则新建一个,然后再查找下一个。查找词和找前缀操作跟insert操作都很类似,不同点在于若不存在子节点,则返回false。查找次最后还要看标识位,而找前缀直接返回true即可

 1 class TrieNode {
 2     public char val;
 3     public boolean isWord; 
 4     public TrieNode[] children = new TrieNode[26];
 5     public TrieNode() {}
 6     TrieNode(char c){
 7         TrieNode node = new TrieNode();
 8         node.val = c;
 9     }
10 }
11 
12 public class Trie {
13     private TrieNode root;
14     public Trie() {
15         root = new TrieNode();
16         root.val = ‘ ‘;
17     }
18 
19     public void insert(String word) {
20         TrieNode ws = root;
21         for(int i = 0; i < word.length(); i++){
22             char c = word.charAt(i);
23             if(ws.children[c - ‘a‘] == null){
24                 ws.children[c - ‘a‘] = new TrieNode(c);
25             }
26             ws = ws.children[c - ‘a‘];
27         }
28         ws.isWord = true;
29     }
30 
31     public boolean search(String word) {
32         TrieNode ws = root; 
33         for(int i = 0; i < word.length(); i++){
34             char c = word.charAt(i);
35             if(ws.children[c - ‘a‘] == null) return false;
36             ws = ws.children[c - ‘a‘];
37         }
38         return ws.isWord;
39     }
40 
41     public boolean startsWith(String prefix) {
42         TrieNode ws = root; 
43         for(int i = 0; i < prefix.length(); i++){
44             char c = prefix.charAt(i);
45             if(ws.children[c - ‘a‘] == null) return false;
46             ws = ws.children[c - ‘a‘];
47         }
48         return true;
49     }
50 }

 

2.

  1 class Trie {
  2     private String letter;
  3     private List<Trie> children;
  4     private boolean end;
  5     /** Initialize your data structure here. */
  6     public Trie() {
  7         this.letter = "";
  8         this.children = new ArrayList<Trie>();
  9         boolean end = false;
 10     }
 11     
 12     public Trie(String letter) {
 13         this.letter = letter;
 14         this.children = new ArrayList<Trie>();
 15         this.end = false;
 16     }
 17     
 18     /** Inserts a word into the trie. */
 19     public void insert(String word) {
 20         insertHelper(this, word, 0);
 21     }
 22     
 23     /** Returns if the word is in the trie. */
 24     public boolean search(String word) {
 25         boolean result = true;
 26         result = result && searchHelper(this, word, 0);
 27         return result;
 28     }
 29     
 30     /** Returns if there is any word in the trie that starts with the given prefix. */
 31     public boolean startsWith(String prefix) {
 32         if (prefix.length() == 0)
 33             return true;
 34         boolean result = false;
 35         for(Trie trie: children){
 36             if (trie.letter.equals(prefix.charAt(0) + "")){
 37                 result = true && startsWithHelper(trie, prefix, 1);
 38                 if(result == false)
 39                     return false;
 40             }
 41         }
 42         return result;
 43     }
 44     
 45     private boolean startsWithHelper(Trie trie, String prefix, int pos){
 46         if(pos == prefix.length())
 47             return true;
 48         boolean result = false;
 49         for(Trie child: trie.children){
 50             if(child.letter.equals(prefix.charAt(pos) + "")){
 51                 result = true && startsWithHelper(child, prefix, pos +1);
 52                 if(result == false)
 53                     return false;
 54             }   
 55         }
 56         return result;
 57     }
 58     
 59     private void insertHelper(Trie trie, String word, int pos){
 60         boolean has = false;
 61         if(pos == word.length())
 62             return;
 63         int len = trie.children.size();
 64         for(int i=0; i < len; i++){
 65             Trie child = trie.children.get(i);
 66             if(child.letter.equals(word.charAt(pos) + "")){
 67                 has = true;
 68                 if(pos == word.length()-1){
 69                     if(child.end == false){
 70                         child.end = true;
 71                     }
 72                 }
 73                 insertHelper(child, word, pos+1);
 74             }
 75         }
 76         if(!has)
 77             create(trie,word,pos);
 78     }
 79     
 80     private void create(Trie parent, String word, int pos){
 81         if(pos == word.length())
 82             return;
 83         Trie child = new Trie(word.charAt(pos) + "");
 84         if(pos == word.length() -1)
 85             child.end = true;
 86         parent.children.add(child);
 87         create(child, word, pos+1);
 88     }
 89     
 90     private boolean searchHelper(Trie trie, String word, int pos){
 91         if(pos == word.length() && trie.children.size() == 0)
 92             return true;
 93         else if(pos == word.length())
 94             return false;
 95         boolean result = false;
 96         for(Trie child: trie.children){
 97             if(child.letter.equals(word.charAt(pos) + "")){
 98                 if(pos == word.length() -1){
 99                     if(child.end == true)
100                         return true;
101                     else
102                         return false;
103                 }
104                 result = true && searchHelper(child, word, pos +1);
105                 if(result == false)
106                     return false;
107             }
109         }
110         return result;
111     }
112 }

 


以上是关于LeetCode 208. Implement Trie (Prefix Tree)的主要内容,如果未能解决你的问题,请参考以下文章

[LeetCode] 208. Implement Trie (Prefix Tree)

leetcode No208. Implement Trie (Prefix Tree)

[LeetCode] 208(LintCode). Implement Trie(Prefix Tree)

LeetCode 208. Implement Trie (Prefix Tree)

[LeetCode] 208. Implement Trie (Prefix Tree) Java

LeetCode 208. Implement Trie (Prefix Tree)