java版抽奖算法
Posted 漫长学习路
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了java版抽奖算法相关的知识,希望对你有一定的参考价值。
奖品大致有12种,根据需求来说苹果11Pro和华为P40的概率为0,所以只有10种奖品,我们的奖池里面只有10种奖品。
奖品名称 | 奖品类型 | 奖品中将概率% |
100元现金红包 | 实物 | 0.1 |
100元京东充值卡 | 实物 | 0.4 |
50元话费 | 虚拟物品 | 1 |
永久翻译包 | 虚拟物品 | 3 |
7天翻译包 | 虚拟物品 | 5 |
230颗蓝钻 | 虚拟物品 | 5 |
1个月会员 | 虚拟物品 | 8 |
100粉钻 | 虚拟物品 | 10 |
20粉钻 | 虚拟物品 | 20 |
5粉钻 | 虚拟物品 | 47.5 |
我们根据概率依次从小到大排列。这样的话就比较简单了,我们生成一个列表,分成几个区间,例如列表长度100,0-0.1是红包的区间,0.2-0.5是充值卡的区间,0.5到1.5是话费的重置区间,然后随机从100取出一个数,看落在哪个区间。算法时间复杂度:预处理O(MN),随机数生成O(1),空间复杂度O(MN),其中N代表物品种类,M则由最低概率决定。
public class LottoRsa
private static final List<Prize> prizePool=new ArrayList<Prize>()
this.add(new Prize("100元现金"));
this.add(new Prize("100元京东卡"));
this.add(new Prize("50元话费"));
this.add(new Prize("永久翻译包"));
this.add(new Prize("7天翻译包"));
this.add(new Prize("230颗蓝砖"));
this.add(new Prize("1个月会员"));
this.add(new Prize("100粉砖"));
this.add(new Prize("20粉砖"));
this.add(new Prize("5粉砖"));
;
public static Prize getPrize()
int randomInt=RandomUtil.randomInt(100);
int randomFloat=RandomUtil.randomInt(10);
Float probability=Float.valueOf(randomInt+"."+randomFloat);
if(probability>=0&&probability<=0.1)
return prizePool.get(0);
if(probability>=0.1&&probability<=0.5)
return prizePool.get(1);
if(probability>=0.5&&probability<=1.5)
return prizePool.get(2);
if(probability>=1.5&&probability<=4.5)
return prizePool.get(3);
if(probability>=4.5&&probability<=9.5)
return prizePool.get(4);
if(probability>=9.5&&probability<=14.5)
return prizePool.get(5);
if(probability>=14.5&&probability<=22.5)
return prizePool.get(6);
if(probability>=22.5&&probability<=32.5)
return prizePool.get(7);
if(probability>=32.5&&probability<=52.5)
return prizePool.get(8);
return prizePool.get(9);
public static void main(String[] args)
for(int i=0;i<100;i++)
System.out.println(getPrize());
第二种就是一般的离散算法,通过概率分布构造几个点,[10, 30, 60, 100],没错,后面的值就是前面依次累加的概率之和(是不是像斐波那契数列)。在生成1~100的随机数,看它落在哪个区间,比如50在[30,60]之间,就是类型3。在查找时,可以采用线性查找,或效率更高的二分查找,时间复杂度O(logN)。
两个概念,PDF(密度分布函数)和 CDF(累积分布函数)两种概率分布,分别对应如上两种算法:
T | 1 | 2 | 3 | 4 |
0.1 | 0.2 | 0.3 | 0.4 | |
CDF | 0.1 | 0.3 | 0.6 | 1.0 |
譬如说如上的PDF[0.1,0.2,0.3,0.4],将每种概率当做一列,别名算法最终的结果是要构造拼装出一个每一列合都为1的矩形,若每一列最后都要为1,那么要将所有元素都乘以4(概率类型的数量)
此时会有概率大于1的和小于1的,接下来就是构造出某种算法用大于1的补足小于1的,使每种概率最后都为1,注意,这里要遵循一个限制:每列至多是两种概率的组合。
最终,我们得到了两个数组,一个是在下面原始的prob数组[0.4,0.8,0.6,1],另外就是在上面补充的Alias数组,其值代表填充的那一列的序号索引,(如果这一列上不需填充,那么就是NULL),[3,4,4,NULL]。当然,最终的结果可能不止一种,你也可能得到其他结果。
等等,这个问题还没有解决,得到这两个数组之后,随机取其中的一列,比如是第三列,让prob[3]的值与一个随机小数f比较,如果f小于prob[3],那么结果就是3,否则就是Alias[3],即4。
我们可以来简单验证得到的概率是不是正确的,比如随机到第三列的概率是1/4,得到第三列下半部分的概率为1/4*3/5,记得在第一列还有它的一部分,那里的概率为1/4*(1-2/5),两者相加最终的结果还是3/10,符合原来的pdf概率。这种算法初始化较复杂,但生成随机结果的时间复杂度为O(1),是一种性能非常好的算法。
T | 1 | 2 | 3 | 4 |
0.1 | 0.2 | 0.3 | 0.4 | |
Alias | 3 | 4 | 4 | NULL |
public final class AliasMethod
/* The random number generator used to sample from the distribution. */
private final Random random;
/* The probability and alias tables. */
private final int[] alias;
private final double[] probability;
/**
* Constructs a new AliasMethod to sample from a discrete distribution and
* hand back outcomes based on the probability distribution.
* <p/>
* Given as input a list of probabilities corresponding to outcomes 0, 1,
* ..., n - 1, this constructor creates the probability and alias tables
* needed to efficiently sample from this distribution.
*
* @param probabilities The list of probabilities.
*/
public AliasMethod(List<Double> probabilities)
this(probabilities, new Random());
/**
* Constructs a new AliasMethod to sample from a discrete distribution and
* hand back outcomes based on the probability distribution.
* <p/>
* Given as input a list of probabilities corresponding to outcomes 0, 1,
* ..., n - 1, along with the random number generator that should be used
* as the underlying generator, this constructor creates the probability
* and alias tables needed to efficiently sample from this distribution.
*
* @param probabilities The list of probabilities.
* @param random The random number generator
*/
public AliasMethod(List<Double> probabilities, Random random)
/* Begin by doing basic structural checks on the inputs. */
if (probabilities == null || random == null)
throw new NullPointerException();
if (probabilities.size() == 0)
throw new IllegalArgumentException("Probability vector must be nonempty.");
/* Allocate space for the probability and alias tables. */
probability = new double[probabilities.size()];
alias = new int[probabilities.size()];
/* Store the underlying generator. */
this.random = random;
/* Compute the average probability and cache it for later use. */
final double average = 1.0 / probabilities.size();
/* Make a copy of the probabilities list, since we will be making
* changes to it.
*/
probabilities = new ArrayList<Double>(probabilities);
/* Create two stacks to act as worklists as we populate the tables. */
Deque<Integer> small = new ArrayDeque<Integer>();
Deque<Integer> large = new ArrayDeque<Integer>();
/* Populate the stacks with the input probabilities. */
for (int i = 0; i < probabilities.size(); ++i)
/* If the probability is below the average probability, then we add
* it to the small list; otherwise we add it to the large list.
*/
if (probabilities.get(i) >= average)
large.add(i);
else
small.add(i);
/* As a note: in the mathematical specification of the algorithm, we
* will always exhaust the small list before the big list. However,
* due to floating point inaccuracies, this is not necessarily true.
* Consequently, this inner loop (which tries to pair small and large
* elements) will have to check that both lists aren't empty.
*/
while (!small.isEmpty() && !large.isEmpty())
/* Get the index of the small and the large probabilities. */
int less = small.removeLast();
int more = large.removeLast();
/* These probabilities have not yet been scaled up to be such that
* 1/n is given weight 1.0. We do this here instead.
*/
probability[less] = probabilities.get(less) * probabilities.size();
alias[less] = more;
/* Decrease the probability of the larger one by the appropriate
* amount.
*/
probabilities.set(more,
(probabilities.get(more) + probabilities.get(less)) - average);
/* If the new probability is less than the average, add it into the
* small list; otherwise add it to the large list.
*/
if (probabilities.get(more) >= 1.0 / probabilities.size())
large.add(more);
else
small.add(more);
/* At this point, everything is in one list, which means that the
* remaining probabilities should all be 1/n. Based on this, set them
* appropriately. Due to numerical issues, we can't be sure which
* stack will hold the entries, so we empty both.
*/
while (!small.isEmpty())
probability[small.removeLast()] = 1.0;
while (!large.isEmpty())
probability[large.removeLast()] = 1.0;
/**
* Samples a value from the underlying distribution.
*
* @return A random value sampled from the underlying distribution.
*/
public int next()
/* Generate a fair die roll to determine which column to inspect. */
int column = random.nextInt(probability.length);
/* Generate a biased coin toss to determine which option to pick. */
boolean coinToss = random.nextDouble() < probability[column];
/* Based on the outcome, return either the column or its alias. */
/* Log.i("1234","column="+column);
Log.i("1234","coinToss="+coinToss);
Log.i("1234","alias[column]="+coinToss);*/
return coinToss ? column : alias[column];
public static void main(String[] args)
TreeMap<String, Double> map = new TreeMap<String, Double>();
map.put("苹果11pro 256G", 0.0);
map.put("华为P40 pro", 0.0);
map.put("100元现金", 0.001);
map.put("100元京东卡", 0.004);
map.put("50元话费", 0.01);
map.put("永久翻译包",0.03);
map.put("7天翻译包", 0.05);
map.put("230颗蓝砖", 0.05);
map.put("一个月会员", 0.08);
map.put("100粉砖", 0.1);
map.put("20粉砖",0.2);
map.put("5粉砖",0.475);
List<Double> list = new ArrayList<Double>(map.values());
List<String> gifts = new ArrayList<String>(map.keySet());
AliasMethod method = new AliasMethod(list);
Map<String, AtomicInteger> resultMap = new HashMap<String, AtomicInteger>();
for (int i = 0; i < 100000; i++)
int index = method.next();
String key = gifts.get(index);
if (!resultMap.containsKey(key))
resultMap.put(key, new AtomicInteger());
resultMap.get(key).incrementAndGet();
for (String key : resultMap.keySet())
System.out.println(key + "==" + resultMap.get(key));
最后输出结果为100元京东卡==402
5粉砖==47440
一个月会员==7984
100元现金==111
230颗蓝砖==4988
100粉砖==10075
50元话费==952
永久翻译包==2980
20粉砖==20089
7天翻译包==4979
以上是关于java版抽奖算法的主要内容,如果未能解决你的问题,请参考以下文章