torch.tensor() 和 torch.to_tensor() 的区别
Posted Enzo 想砸电脑
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了torch.tensor() 和 torch.to_tensor() 的区别相关的知识,希望对你有一定的参考价值。
在跑模型的时候,遇到如下报错
UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
网上查了一下,发现将 torch.tensor()
改写成 torch.as_tensor()
就可以避免报错了。
# 如下写法报错
feature = torch.tensor(image, dtype=torch.float32)
# 改为
feature = torch.as_tensor(image, dtype=torch.float32)
然后就又仔细研究了下 torch.as_tensor()
和 torch.tensor()
的区别,在此记录。
1、torch.as_tensor()
new_data = torch.as_tensor(data, dtype=None,device=None)->Tensor
作用:生成一个新的 tensor, 这个新生成的tensor 会根据原数据的实际情况,来决定是进行浅拷贝,还是深拷贝。当然,会优先浅拷贝,浅拷贝会共享内存,并共享 autograd 历史记录。
情况一:数据类型相同 且 device相同,会进行浅拷贝,共享内存
import numpy
import torch
a = numpy.array([1, 2, 3])
t = torch.as_tensor(a)
t[0] = -1
print(a) # [-1 2 3]
print(a.dtype) # int64
print(t) # tensor([-1, 2, 3])
print(t.dtype) # torch.int64
import numpy
import torch
a = torch.tensor([1, 2, 3], device=torch.device('cuda'))
t = torch.as_tensor(a)
t[0] = -1
print(a) # tensor([-1, 2, 3], device='cuda:0')
print(t) # tensor([-1, 2, 3], device='cuda:0')
情况二: 数据类型相同,但是device不同,深拷贝,不再共享内存
import numpy
import torch
import numpy
a = numpy.array([1, 2, 3])
t = torch.as_tensor(a, device=torch.device('cuda'))
t[0] = -1
print(a) # [1 2 3]
print(a.dtype) # int64
print(t) # tensor([-1, 2, 3], device='cuda:0')
print(t.dtype) # torch.int64
情况三:device相同,但数据类型不同,深拷贝,不再共享内存
import numpy
import torch
a = numpy.array([1, 2, 3])
t = torch.as_tensor(a, dtype=torch.float32)
t[0] = -1
print(a) # [1 2 3]
print(a.dtype) # int64
print(t) # tensor([-1., 2., 3.])
print(t.dtype) # torch.float32
2、torch.tensor()
torch.tensor()
是深拷贝方式。
torch.tensor(data, dtype=None, device=None, requires_grad=False, pin_memory=False)
深拷贝:会拷贝 数据类型 和 device,不会记录 autograd 历史 (also known as a “leaf tensor” 叶子tensor)
重点是:
- 如果原数据的数据类型是:list, tuple, NumPy ndarray, scalar, and other types,不会 waring
- 如果原数据的数据类型是:tensor,使用 torch.tensor(data) 就会报waring
# 原数据类型是:tensor 会发出警告
import numpy
import torch
a = torch.tensor([1, 2, 3], device=torch.device('cuda'))
t = torch.tensor(a)
t[0] = -1
print(a)
print(t)
# 输出:
# tensor([1, 2, 3], device='cuda:0')
# tensor([-1, 2, 3], device='cuda:0')
# /opt/conda/lib/python3.7/site-packages/ipykernel_launcher.py:5: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
# 原数据类型是:list, tuple, NumPy ndarray, scalar, and other types, 没警告
import torch
import numpy
a = numpy.array([1, 2, 3])
t = torch.tensor(a)
b = [1,2,3]
t= torch.tensor(b)
c = (1,2,3)
t= torch.tensor(c)
结论就是:以后尽量用 torch.as_tensor()
吧
以上是关于torch.tensor() 和 torch.to_tensor() 的区别的主要内容,如果未能解决你的问题,请参考以下文章
PyTorch中的torch.Tensor.view()和torch.Tensor.view_as()的用法详解
PyTorch中的torch.Tensor.permute()和torch.Tensor.transpose()的区别