YOLOV8-gradcam 热力图可视化 即插即用 不需要对源码做任何修改!

Posted 魔鬼面具

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了YOLOV8-gradcam 热力图可视化 即插即用 不需要对源码做任何修改!相关的知识,希望对你有一定的参考价值。

YOLOV8 GradCam 热力图可视化.

本文给大家带来yolov8-gradcam热力图可视化,这个可视化是即插即用不需要对源码做任何修改喔!给您剩下的不少麻烦!
代码链接:yolo-gradcam
里面还有yolov5和v7的热力图可视化代码,也是即插即用不需要对源码做任何修改喔!

先来看一下效果图


这个是由官方权重yolov8m实现的。

操作教程 哔哩哔哩视频

1. 从github中下载源码到自己的代码路径下。


简单来说就是直接复制到你的v8代码文件夹下即可,路径一定要放对,不然会找不到一些包。

2. 修改参数

def get_params():
    params = 
        'weight': 'yolov8m.pt',
        'cfg': 'ultralytics/models/v8/yolov8m.yaml',
        'device': 'cuda:0',
        'method': 'GradCAM', # GradCAMPlusPlus, GradCAM, XGradCAM
        'layer': 'model.model[8]',
        'backward_type': 'all', # class, box, all
        'conf_threshold': 0.6, # 0.6
        'ratio': 0.02 # 0.02-0.1
    
    return params

主要参数都在这个函数里面,其中解释如下:

  • weight
    权重路径。
  • cfg
    配置文件路径。(需要跟权重所训练出来的配置文件一致)
  • device
    运行的设备。cpu:cpu,gpu:cuda:0
  • method
    默认是GradCAM,还支持GradCAMPlusPlus和XGradCAM。但是作者这边实测都是GradCAM效果最好。
  • layer

    代码中的model.model[8]就是上图所示,经测试,对于yolov8,使用5-9效果还可以,至于对于自己的数据集,这个就需要慢慢测试了。
    所以如果需要修改求梯度的层,只需要修改数字即可,比如我想用第9层,也就是model.model[9]。
  • backward_type
    反向传播的变量。这里默认是all,也就是score+box进行反向传播,然后进行梯度求和。
    其中还支持score和box。建议使用all,效果不佳再换。
  • conf_threshold
    置信度阈值,默认0.6。
  • ratio
    取前多少数据,默认是0.02,就是只取置信度(yolov8为类别最大概率为置信度)排序后的前百分之2的目标进行计算热力图。
    这个可能比较难理解,一般0.02就可以了,这个值不是越大越好,最大建议是0.1

3.运行

if __name__ == '__main__':
    model = yolov8_heatmap(**get_params())
    model(r'20230117113354.jpg', 'result')
model = yolov8_heatmap(**get_params()) 这行代码为初始化
model(r'20230117113354.jpg', 'result') 第一个参数是图片的路径,第二个参数是保存路径,比如是result的话,其会创建一个名字为result的文件夹,如果result文件夹不为空,其会先清空文件夹。


运行输出如下:

运行后其会输出你的结构,你可以根据这个结构去选择你的层号,然后还会有一行:

	Transferred 475/475 items

这个非常重要,这个如果分子不等于分母的话,那证明你的cfg文件和你的模型权重不匹配!
然后下方有一个进度条:

QA:

  1. 为什么进度条还没有满就停止了呢?
    因为后面的目标已经不满足置信度的设定值。
  2. 这个进度条的长度126是什么意思?
    这个就是之前设定的参数ratio的作用,其只会选择前0.02的目标进行热力图可视化。

那么其实我们可以看到ratio等于0.02已经足够了,其他目标都是小于0.6的置信度。

4. 查看输出

打开设定的保存路径result文件夹下:

在这里,你可以挑选效果比较好的出来进行展示。

最后我这里做了一个实验,分别是对7,8,9layer进行实验:




这个实验主要是给大家看下,不同的layer,不同的backward_type,不同的method出来的效果都不一样,有些可能效果很差,需要自行调整测试,热力图这个东西是比较玄学的,有些结果会比较乱,有些结果会比较可观,有些图它可能就是热力图效果不好也有可能。

最后祝大家都能出到满意的图,如果可以的话github帮忙点个star,博文也帮忙点个赞,谢谢大家咯!

以上是关于YOLOV8-gradcam 热力图可视化 即插即用 不需要对源码做任何修改!的主要内容,如果未能解决你的问题,请参考以下文章

R语言ggplot2可视化:使用热力图可视化dataframe数据自定义设置热力图的颜色自定添加标题轴标签热力图线框等

Pytorch可视化热力图

数据可视化Python 热力图(seaborn.heatmap)

Python使用matplotlib可视化相关性分析热力图图heatmap使用seaborn中的heatmap函数可视化相关性热力图(Correllogram)

热力图在数据可视化中的应用|大简学苑

Python使用matplotlib可视化时间序列日历热力图日历热力图可以很好地描绘极端值和节日数据特性(Calendar Heatmap)