100天精通Python(数据分析篇)——第69天:Pandas常用数据筛选方法(betweenisinlociloc)

Posted 无 羡ღ

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了100天精通Python(数据分析篇)——第69天:Pandas常用数据筛选方法(betweenisinlociloc)相关的知识,希望对你有一定的参考价值。

文章目录

在数据分析清洗数据过程中,可能需要会滤掉、删除DataFrame中一些行,本文将介绍常用的筛选方法。

一、布尔索引

布尔索引可以用于判断和筛选

>>> import pandas as pd
>>> import numpy as np
>>>
>>> df = pd.DataFrame(np.random.randn(3, 3), columns=['A', 'B', 'C'])
>>> print(df)
          A         B         C
0 -0.595510 -1.349175 -0.313918
1  1.130604 -2.094348 -0.449182
2  1.745407 -0.136642 -0.943479
>>>
>>> # 布尔索引判断:A列大于1的数
>>> print(df['A'] > 1)
0    False
1     True
2     True
Name: A, dtype: bool
>>>
>>> # 布尔索引筛选:A列中大于1的行
>>> print(df[df['A'] > 1])
          A         B         C
1  1.130604 -2.094348 -0.449182
2  1.745407 -0.136642 -0.943479

二、between()

between(left,right),筛选指定区间的行

>>> import pandas as pd
>>>
>>> data = 'name': ['小红', '小明', '小白', '小黑'], 'age': [10, 20, 30, 25]
>>> df = pd.DataFrame(data)
>>> print(df)
  name  age
0   小红   10
1   小明   20
2   小白   30
3   小黑   25
>>>
>>> # 判断年龄是否在20-30之间
>>> print(df['age'].between(20, 30))
0    False
1     True
2     True
3     True
Name: age, dtype: bool
>>> # 筛选年龄在20-30之间的行
>>> print(df[df['age'].between(20, 30)])
  name  age
1   小明   20
2   小白   30
3   小黑   25

三、isin()

isin()接收一个列表,可以同时判断数据是否与多个值相等,若与其中的某个值相等则返回True,否则则为False

创建DataFrame:

>>> import pandas as pd
>>> import numpy as np
>>>
>>> data = [['foo', 'one', 'small', 1], ['foo', 'one', 'large', 5],
...         ['bar', 'one', 'small', 10], ['bar', 'two', 'samll', 10],
...         ['bar', 'two', 'large', 50]]
>>> df = pd.DataFrame(data, columns=['A', 'B', 'C', 'D'])
>>> print(df)
     A    B      C   D
0  foo  one  small   1
1  foo  one  large   5
2  bar  one  small  10
3  bar  two  samll  10
4  bar  two  large  50

1. 单列筛选

df[df[列名].isin([异常值])]

>>> # 1. 接收一个值:判断A列中的值是否为foo
>>> df['A'].isin(['foo'])
0     True
1     True
2    False
3    False
4    False
Name: A, dtype: bool
>>>
>>> # 2. 接收多个值:判断A列中的值是否为foo,bar
>>> df['A'].isin(['foo','bar'])
0    True
1    True
2    True
3    True
4    True
Name: A, dtype: bool

2. 多列筛选

同时满足用&连接,或的话用 | 连接

  • 筛选出每列都有异常值的行:df[df[列名].isin([异常值])& df[列名].isin([异常值])]

    >>> # 筛选中A列中等于bar,并且B列中等于one的行
    >>> df[df['A'].isin(['bar'])& df['B'].isin(['one'])]
         A    B      C   D
    2  bar  one  small  10
    
  • 筛选出至少有一列有异常值的行:df[df[列名].isin([异常值])| df[列名].isin([异常值])]

    >>> # 筛选中A列中等于bar,或者B列中等于one的行
    >>> df[df['A'].isin(['bar']) | df['B'].isin(['one'])]
         A    B      C   D
    0  foo  one  small   1
    1  foo  one  large   5
    2  bar  one  small  10
    3  bar  two  samll  10
    4  bar  two  large  50
    

3. 通过字典的形式传递多个条件

‘某列’:[条件],‘某列’:[条件],

# 这种方法不符合的位置都会显示NAN

>>> df[df.isin('A':['bar'],'C':['small'])]
     A    B      C   D
0  NaN  NaN  small NaN
1  NaN  NaN    NaN NaN
2  bar  NaN  small NaN
3  bar  NaN    NaN NaN
4  bar  NaN    NaN NaN

4. 删除异常值所在行

因为isin()返还的是boolean的DataFrame,在里面的是True,不在里面的是False,所以我们只需要对它进行异或取反即可。

# 删除A列中foo的行

>>> df[True^df['A'].isin(['foo'])]
     A    B      C   D
2  bar  one  small  10
3  bar  two  samll  10
4  bar  two  large  50

5. isnotin实现

前面加上 ~

# 删除A列中foo的行
>>> df[~(df['A']=='foo')]
     A    B      C   D
2  bar  one  small  10
3  bar  two  samll  10
4  bar  two  large  50

四、loc、iloc(重要)

loc()函数和iloc()函数的区别在于:

  • loc()函数是通过索引名称提取数据
  • iloc()函数通过行和列的下标提取数据

0. 创建DataFrame

>>> import pandas as pd
>>>
>>> data = [['foo', 'one', 'small', 1], ['foo', 'one', 'large', 5],
...         ['bar', 'one', 'small', 10], ['bar', 'two', 'samll', 10],
...         ['bar', 'two', 'large', 50]]
>>> df = pd.DataFrame(data, columns=['A', 'B', 'C', 'D'], index=['a', 'b', 'c', 'd', 'e'])
>>> print(df)
     A    B      C   D
a  foo  one  small   1
b  foo  one  large   5
c  bar  one  small  10
d  bar  two  samll  10
e  bar  two  large  50

1. 提取行数据

>>> # loc取索引为a的行(第一行)
>>> df.loc['a']
A      foo
B      one
C    small
D        1
Name: a, dtype: object
>>>
>>> # iloc取索引为a的行(第一行)
>>> df.iloc[0]
A      foo
B      one
C    small
D        1
Name: a, dtype: object

2. 提取列数据

>>> # loc取A列所有行
>>> df.loc[:, ['A']]
     A
a  foo
b  foo
c  bar
d  bar
e  bar
>>>
>>> # iloc取A列所有行
>>> df.iloc[:,[0]]
     A
a  foo
b  foo
c  bar
d  bar
e  bar

3. 提取多列数据

(1)连续多列:

>>> # loc取A,B,C列所有行
>>> df.loc[:, ['A', 'B', 'C']]
     A    B      C
a  foo  one  small
b  foo  one  large
c  bar  one  small
d  bar  two  samll
e  bar  two  large
>>>
>>> # iloc取A,B,C列所有行
>>> df.iloc[:, 0:3]
     A    B      C
a  foo  one  small
b  foo  one  large
c  bar  one  small
d  bar  two  samll
e  bar  two  large

(2)不连续多列

>>> # loc取A,D列所有行
>>> df.loc[:, ['A', 'D']]
     A   D
a  foo   1
b  foo   5
c  bar  10
d  bar  10
e  bar  50
>>>
>>> # iloc取A,D列所有行
>>> df.iloc[:, [0,3]]
     A   D
a  foo   1
b  foo   5
c  bar  10
d  bar  10
e  bar  50

4. 提取指定行、指定列数据

>>> # loc取索引为a、d,并且列名也为A、D的行和列
>>> df.loc[['a', 'd'], ['A', 'D']]
     A   D
a  foo   1
d  bar  10
>>>
>>> # iloc取索引为a、d,并且列名也为A、D的行和列
>>> df.iloc[[0, 3], [0, 3]]
     A   D
a  foo   1
d  bar  10

5. 提取所有数据

>>> # loc取全部
>>> df.loc[:,:]
     A    B      C   D
a  foo  one  small   1
b  foo  one  large   5
c  bar  one  small  10
d  bar  two  samll  10
e  bar  two  large  50
>>>
>>> # iloc取全部
>>> df.iloc[:,:]
     A    B      C   D
a  foo  one  small   1
b  foo  one  large   5
c  bar  one  small  10
d  bar  two  samll  10
e  bar  two  large  50

6. 提取指定数据行

利用loc可以对值进行筛选

>>> # loc取A列值为foo的行
>>> df.loc[df['A'] == 'foo']
     A    B      C  D
a  foo  one  small  1
b  foo  one  large  5
>>>
>>> # loc取D值大于等于10的行
>>> df.loc[df['D'] >= 10]
     A    B      C   D
c  bar  one  small  10
d  bar  two  samll  10
e  bar  two  large  50

🎉参与抽粉丝送书啦

书籍展示:《 贝叶斯算法与机器学习 》


【书籍内容简介】

  • 涵盖了贝叶斯概率、概率估计、贝叶斯分类、随机场、参数估计、机器学习、深度学习、贝叶斯网络、动态贝叶斯网络、贝叶斯深度学习等。本书涉及的应用领域包含机器学习、图像处理、语音识别、语义分析等。本书整体由易到难,逐步深入,内容以算法原理讲解和应用解析为主,每节内容辅以案例进行综合讲解。

也有不想靠抽,想自己买的同学可以参考下面的链接

以上是关于100天精通Python(数据分析篇)——第69天:Pandas常用数据筛选方法(betweenisinlociloc)的主要内容,如果未能解决你的问题,请参考以下文章

100天精通Python(数据分析篇)——第52天:numpy完结

100天精通Python(数据分析篇)——第53天:初始pandas模块

100天精通Python(数据分析篇)——第49天:初识numpy模块

100天精通Python(数据分析篇)——第54天:Series对象大总结

100天精通Python(数据分析篇)——第50天:numpy进阶

100天精通Python(数据分析篇)——第64天:Pandas分组groupby函数案例