365计划-1pytorch实现mnist手写数字识别

Posted 湫椿.

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了365计划-1pytorch实现mnist手写数字识别相关的知识,希望对你有一定的参考价值。

🍨 本文为🔗365天深度学习训练营 中的学习记录博客
🍦 参考文章地址: 365天深度学习训练营-第P1周:mnist手写数字识别
🍖 作者:K同学啊

###本项目来自K同学在线指导###

import torch.nn as nn
import matplotlib.pyplot as plt
import torchvision
import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
import torch
import numpy as np
from torchsummary import summary
import warnings
import torch.nn.functional as F

device =torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("device:",device)

##数据集下载
#torchvision.datasets.MNIST(root,train=True,transform=None,target_transform=None,download=True)
ROOT_FOLDER="data"
MNIST_FOLDER=ROOT_FOLDER+"./mnist"
if not os.path.exists(ROOT_FOLDER) or not os.path.isdir(MNIST_FOLDER):
    print("开始下载")
    train_ds=torchvision.datasets.MNIST(
        ROOT_FOLDER,
        train=True,
        transform=torchvision.transforms.ToTensor(),
        download=True
    )
    test_ds=torchvision.datasets.MNIST(
        ROOT_FOLDER,
        train=False,
        transform=torchvision.transforms.ToTensor(),
        download=True,
    )
else:
    print("数据集已下载")
    train_ds=torchvision.datasets.MNIST(
        ROOT_FOLDER,
        train=True,
        transform=torchvision.transforms.ToTensor(),
        download=False,
    )
    test_ds=torchvision.datasets.MNIST(
        ROOT_FOLDER,
        train=False,
        transform=torchvision.transforms.ToTensor(),
        download=False,
    )

##数据加载
batch_size = 32
train_dl = torch.utils.data.DataLoader(train_ds,
                                       batch_size=batch_size,
                                       shuffle=True)
test_dl = torch.utils.data.DataLoader(test_ds,
                                       batch_size=batch_size)

imgs, labels = next(iter(train_dl))
print(imgs.shape)

plt.figure("数据可视化",figsize=(15,5))
for i,imgs in enumerate(imgs[:20]):
    npimg=np.squeeze(imgs.numpy())
    plt.subplot(2,10,i+1)
    plt.imshow(npimg,cmap=plt.cm.binary)
    plt.axis("off")
#plt.show()


num_classes = 10  # 图片的类别数

class Model(nn.Module):
    def __init__(self):
        super().__init__()
        # 特征提取网络
        self.conv1 = nn.Conv2d(1, 32, kernel_size=3)  # 第一层卷积,卷积核大小为3*3
        self.pool1 = nn.MaxPool2d(2)  # 设置池化层,池化核大小为2*2
        self.drop1 = nn.Dropout(p=0.15)
        self.conv2 = nn.Conv2d(32, 64, kernel_size=3)  # 第二层卷积,卷积核大小为3*3
        self.pool2 = nn.MaxPool2d(2)
        self.drop2 = nn.Dropout(p=0.15)

        # 分类网络
        self.fc1 = nn.Linear(1600, 64)
        self.fc2 = nn.Linear(64, num_classes)

    # 前向传播
    def forward(self, x):
        x = self.drop1(self.pool1(F.relu(self.conv1(x))))
        x = self.drop2(self.pool2(F.relu(self.conv2(x))))

        x = torch.flatten(x, start_dim=1)

        x = F.relu(self.fc1(x))
        x = self.fc2(x)

        return x


##打印模型

model=Model().to(device)

##超参数设置
loss_fn=nn.CrossEntropyLoss()
learn_rate=1e-2
opt=torch.optim.SGD(model.parameters(),lr=learn_rate)

##编写训练函数
def train(dataloader,model,loss_fn,optimizer):
    size=len(dataloader.dataset)
    num_batches=len(dataloader)

    train_loss,train_acc=0,0

    for x,y in dataloader:
        X,Y=x.to(device),y.to(device)
        pred=model(X)
        loss=loss_fn(pred,Y)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        train_acc += (pred.argmax(1) == Y).type(torch.float).sum().item()
        train_loss += loss.item()

    train_acc /= size
    train_loss /= num_batches
    return train_acc,train_loss

def test(dataloader,model,loss_fn):
    size=len(dataloader.dataset)
    num_batches=len(dataloader)
    test_loss,test_acc=0,0
    with torch.no_grad():
        for imgs,target in dataloader:
            imgs,target = imgs.to(device),target.to(device)
            target_pred=model(imgs)
            loss= loss_fn(target_pred,target)
            test_loss+=loss.item()
            test_acc+=(target_pred.argmax(1)==target).type(torch.float).sum().item()
    test_acc /=size
    test_loss /=num_batches
    return test_acc,test_loss

epochs=10
train_loss=[]
train_acc=[]
test_loss=[]
test_acc=[]

for epoch in range(epochs):
    model.train()
    epoch_train_acc,epoch_train_loss=train(train_dl,model,loss_fn,opt)
    model.eval()
    epoch_test_acc,epoch_test_loss=test(test_dl,model,loss_fn)
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    template=("Epoch::2d,Train_acc::.1f%,Train_loss::.3f,Test_acc::.1f%,Test_loss::.3f")
    print(template.format(epoch+1,epoch_train_acc*100,epoch_train_loss,epoch_test_acc*100,epoch_test_loss))
print("Done")


warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()


''' 保存模型参数 '''
saveFile = os.path.join('output', 'epoch'+str(epochs)+'.pkl')
torch.save(model.state_dict(), saveFile)

''' 加载之前保存的模型 '''
if not os.path.exists('output') or not os.path.isdir('output'):
    os.makedirs('output')
start_epoch=0
if start_epoch > 0:
    resumeFile = os.path.join('output', 'epoch'+str(start_epoch)+'.pkl')
    if not os.path.exists(resumeFile) or not os.path.isfile(resumeFile):
        start_epoch = 0
    else:
        model.load_state_dict(torch.load(resumeFile))  # 加载模型参数

打印结果:

Epoch: 1,Train_acc:77.6%,Train_loss:0.749,Test_acc:93.1%,Test_loss:0.227
Epoch: 2,Train_acc:93.5%,Train_loss:0.211,Test_acc:96.5%,Test_loss:0.118
Epoch: 3,Train_acc:95.7%,Train_loss:0.140,Test_acc:96.5%,Test_loss:0.103
Epoch: 4,Train_acc:96.5%,Train_loss:0.114,Test_acc:97.5%,Test_loss:0.076
Epoch: 5,Train_acc:96.9%,Train_loss:0.097,Test_acc:97.9%,Test_loss:0.065
Epoch: 6,Train_acc:97.3%,Train_loss:0.086,Test_acc:98.1%,Test_loss:0.059
Epoch: 7,Train_acc:97.6%,Train_loss:0.077,Test_acc:98.2%,Test_loss:0.054
Epoch: 8,Train_acc:97.8%,Train_loss:0.071,Test_acc:98.4%,Test_loss:0.049
Epoch: 9,Train_acc:97.9%,Train_loss:0.066,Test_acc:98.4%,Test_loss:0.047
Epoch:10,Train_acc:98.1%,Train_loss:0.061,Test_acc:98.8%,Test_loss:0.039
Epoch:11,Train_acc:98.2%,Train_loss:0.058,Test_acc:98.6%,Test_loss:0.041
Epoch:12,Train_acc:98.3%,Train_loss:0.053,Test_acc:98.7%,Test_loss:0.038
Epoch:13,Train_acc:98.4%,Train_loss:0.051,Test_acc:98.9%,Test_loss:0.036
Epoch:14,Train_acc:98.5%,Train_loss:0.048,Test_acc:98.7%,Test_loss:0.038
Epoch:15,Train_acc:98.6%,Train_loss:0.046,Test_acc:98.8%,Test_loss:0.035
Epoch:16,Train_acc:98.5%,Train_loss:0.045,Test_acc:98.9%,Test_loss:0.035
Epoch:17,Train_acc:98.7%,Train_loss:0.041,Test_acc:98.9%,Test_loss:0.032
Epoch:18,Train_acc:98.7%,Train_loss:0.040,Test_acc:98.9%,Test_loss:0.034
Epoch:19,Train_acc:98.8%,Train_loss:0.038,Test_acc:99.1%,Test_loss:0.031
Epoch:20,Train_acc:98.8%,Train_loss:0.037,Test_acc:99.1%,Test_loss:0.030



结果可视化:


本次分类任务较简单,深度学习具有强大的数据拟合性能,训练至20轮已完全收敛,达到良好效果。
(1):训练数据量小,每张图片尺寸为28*28。
(2):使用droout修正过拟合
(3):学习率为1e-2,故能快速收敛

以上是关于365计划-1pytorch实现mnist手写数字识别的主要内容,如果未能解决你的问题,请参考以下文章

第一周:mnist手写数字识别 | 365天深度学习训练营

Pytorch实战 | 第P1周:实现mnist手写数字识别

Pytorch实战 | 第P1周:实现mnist手写数字识别

卷积神经网络CNN实现mnist手写数字识别

365天深度学习训练营-学习线路

Pytorch Note25 深层神经网络实现 MNIST 手写数字分类