Python机器学习数据可视化讲解及性别周末与购物间可视化实战(超详细 附源码)
Posted showswoller
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Python机器学习数据可视化讲解及性别周末与购物间可视化实战(超详细 附源码)相关的知识,希望对你有一定的参考价值。
需要源码和数据集请点赞关注收藏后评论区留言私信~~~
数据可视化
数据可视化通过直观的方式增加对数据的理解,帮助提取有用特征。
1.特征取值分布
特征的取值分布情况可以为分析特征提供重要信息。一般采用直方图和饼图来可视化取值分布。Python扩展库Matplotlib提供了多种画图方法。
2.离散型特征与离散型标签的关系
样本特征的值与该样本的标签的关系,是机器学习最为关心的事情。通过可视化,可以直观地展现标签值随某特征取值的变化而变化的情况。
3.连续型特征与离散型标签的关系
观察连续型特征与离散型标签的关系,常用盒图(Box plots)。
对于单个变量,盒图描述的是其分布的四分位图:上边缘 上四分位数 中位数 下四分位数和下边缘,上边缘是最大数,上四分位数是由大到小排在四分之一的那个值,中位数是排在中间的那个数,下四分位数是排在四分之三的那个数,下边缘是最小数,单个变量的盒图便于观察变量值的分布中心 扩展和偏移,另外还可以发现离群的异常值的存在
4.离散型特征与连续型标签的关系
密度图(Density plots)也可用来可视化类似关系。 在密度图中,将每个离散的特征值画一条曲线,多条曲线放在一起进行比较,每个离散特征值的曲线的横坐标设为连续的标签值,纵坐标设为对应标签纸的密度
5.连续型特征与连续型标签的关系
连续型特征与连续型标签的关系是常用的画图方式,即将输入、输出值对应在平面上作点,可采用matplotlib和pandas中的scatter()函数。
下面是部分绘图函数与其对应函数方法
可视化性别、周末与购物之间关系
可以采用马赛克图来可视化离散型特征值与离散型标签的关系
下面给出一个简单示例,其中可视化了性别与购物之间关系的可视化,以及周末与购物之间关系的可视化
部分数据如下 性别1男 0女 是否购物 1购物 0不购物
[2020, 11, 1, 1, 1],
[2020, 11, 1, 0, 1],
[2020, 11, 1, 0, 1],
[2020, 11, 1, -1, 1],
[2020, 11, 1, 1, 1],
[2020, 11, 1, 0, 1],
[2020, 11, 1, 0, 0],
[2020, 11, 1, 0, 1],
[2020, 11, 2, 1, 0],
[2020, 11, 2, 1, 1],
],
[2020, 11, 7, 0, 1],
[2020, 11, 8, 1, 1],
[2020, 11, 8, 0, 1],
[2020, 11, 9, 0, 0],
[2020, , 11, 1, -1],
[2020, 11, 12, 0, 0]]
性别与购物关系的马赛克图如下
周末与购物之间关系如下
部分代码如下
import datetime # 导入datetime模块,该模块用来处理与日期和时间有关的计算
# 定义一个判断是否为周末的函数
def isweekend( date ):
theday = datetime.date( date[0], date[1], date[2] ) # 创建一个date对象
if theday.isoweekday() in 6, 7 : # 如果date是周末则返回1,否则返回0
return 1
else:
return 0
# 是否周末的特征,性别,是否购物三项数据
train_set1 = []
for i in range(len(train_data)):
weekend = isweekend(train_data[i][:3])
train_set1.append( [weekend, train_data[i][3], train_data[i][4]] )
wk = df[0].astype('str').apply(lambda x: '周末' if x=='1' else '非周末')
man = df[1].astype('str').apply(lambda x: '男' if x=='1' else '女')
label = df[2].astype('str').apply(lambda x: '购物' if x=='1' else '不购物')
#print(label)
mosaic_data1 = pd.concat([man, label], axis=1)
#print(mosaic_data)
mosaic(data=mosaic_data1, index=[1, 2], gap=0.01, title=u'性别与购物的关系')
创作不易 觉得有帮助请点赞关注收藏~~~
以上是关于Python机器学习数据可视化讲解及性别周末与购物间可视化实战(超详细 附源码)的主要内容,如果未能解决你的问题,请参考以下文章
机器学习实践:《Python机器学习实践指南》中文PDF+英文PDF+代码