RTree源代码——C语言实现
Posted 车斗
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了RTree源代码——C语言实现相关的知识,希望对你有一定的参考价值。
RTree源代码——C语言实现
cheungmine
一、什么是RTree
“R树是B树向多维空间发展的另一种形式,它将空间对象按范围划分,每个结点都对应一个区域和一个磁盘页,非叶结点的磁盘页中存储其所有子结点的区域范围,非叶结点的所有子结点的区域都落在它的区域范围之内;叶结点的磁盘页中存储其区域范围之内的所有空间对象的外接矩形。每个结点所能拥有的子结点数目有上、下限,下限保证对磁盘空间的有效利用,上限保证每个结点对应一个磁盘页,当插入新的结点导致某结点要求的空间大于一个磁盘页时,该结点一分为二。R树是一种动态索引结构,即:它的查询可与插入或删除同时进行,而且不需要定期地对树结构进行重新组织。当更新一个关系并且在这个关系上正在做扫描时,如果更新影响到了扫描操作的任何一个页,我们需要检查扫描并且修复它。”
其实上面的话,你也不用多做研究。理解RTree是范围树,适合做空间索引(快速查找)。更多的关于RTree的知识我也没时间写在这里,我只知道原理,然后提供了下面的代码(经过我修改,看起来更顺眼些)。一定要用它。感谢算法的原作者和发明算法的人。“帝国大厦的建立,人才更在资本之上”啊!
二、RTree的实现代码
本文的代码来源于GRASS,我根据自己的习惯,作了适当的修改,把原来多个文件合成了2个文件(rtree.h和rtree.c)。本文提供了完整的rtree实现代码和一个简单的测试代码(test.c)。如果你发现什么问题,请及时提交评论,以利改正。
RTree.h文件:
/* ***************************************************************************
* RTree.H
*
* MODULE: R-Tree library
*
* AUTHOR(S): Antonin Guttman - original code
* Daniel Green (green@superliminal.com) - major clean-up
* and implementation of bounding spheres
*
* PURPOSE: Multi Dimensional Index
*
* COPYRIGHT: (C) 2001 by the GRASS Development Team
*
* This program is free software under the GNU General Public
* License (>=v2). Read the file COPYING that comes with GRASS
* for details.
*
* LAST MODIFY: ZhangLiang (cheungmine@gmail.com) - 2007-11
**************************************************************************** */
#ifndef RTREE_H_INCLUDED
#define RTREE_H_INCLUDED
/* PAGE_SIZE is normally the natural page size of the machine */
#define PAGE_SIZE 512
#define DIMS_NUMB 3 /* number of dimensions */
#define SIDES_NUMB 2*DIMS_NUMB
/* typedef float REALTYPE; */
typedef double REALTYPE;
#ifndef TRUE
#define TRUE 1
#define FALSE 0
#endif
typedef struct _RTREEMBR
REALTYPE bound[SIDES_NUMB]; /* xmin,ymin,...,xmax,ymax,... */
RTREEMBR;
typedef struct _RTREEBRANCH
RTREEMBR mbr;
struct _RTREENODE * child; /* mbr id */
RTREEBRANCH;
/* max branching factor of a node */
#define MAXCARD (int)((PAGE_SIZE-(2*sizeof(int))) / sizeof(RTREEBRANCH))
typedef struct _RTREENODE
int count;
int level; /* 0 is leaf, others positive */
RTREEBRANCH branch[MAXCARD];
RTREENODE;
typedef struct _RTREELISTNODE
struct _RTREELISTNODE * next;
RTREENODE * node;
RTREELISTNODE;
/*
* If passed to a tree search, this callback function will be called
* with the ID of each data mbr that overlaps the search mbr
* plus whatever user specific pointer was passed to the search.
* It can terminate the search early by returning 0 in which case
* the search will return the number of hits found up to that point.
*/
typedef int ( * pfnSearchHitCallback)( int id, void * pfnParam);
int RTreeSetNodeMax( int new_max);
int RTreeSetLeafMax( int new_max);
int RTreeGetNodeMax( void );
int RTreeGetLeafMax( void );
/* *
* Initialize a rectangle to have all 0 coordinates.
*/
void RTreeInitRect( RTREEMBR * rc);
/* *
* Return a mbr whose first low side is higher than its opposite side -
* interpreted as an undefined mbr.
*/
RTREEMBR RTreeNullRect( void );
/* *
* Print out the data for a rectangle.
*/
void RTreePrintRect( RTREEMBR * rc, int depth );
/* *
* Calculate the 2-dimensional area of a rectangle
*/
REALTYPE RTreeRectArea( RTREEMBR * rc );
/* *
* Calculate the n-dimensional volume of a rectangle
*/
REALTYPE RTreeRectVolume( RTREEMBR * rc );
/* *
* Calculate the n-dimensional volume of the bounding sphere of a rectangle
* The exact volume of the bounding sphere for the given RTREEMBR.
*/
REALTYPE RTreeRectSphericalVolume( RTREEMBR * rc );
/* *
* Calculate the n-dimensional surface area of a rectangle
*/
REALTYPE RTreeRectSurfaceArea( RTREEMBR * rc );
/* *
* Combine two rectangles, make one that includes both.
*/
RTREEMBR RTreeCombineRect( RTREEMBR * rc1, RTREEMBR * rc2 );
/* *
* Decide whether two rectangles overlap.
*/
int RTreeOverlap( RTREEMBR * rc1, RTREEMBR * rc2);
/* *
* Decide whether rectangle r is contained in rectangle s.
*/
int RTreeContained( RTREEMBR * r, RTREEMBR * s);
/* *
* Split a node.
* Divides the nodes branches and the extra one between two nodes.
* Old node is one of the new ones, and one really new one is created.
* Tries more than one method for choosing a partition, uses best result.
*/
void RTreeSplitNode( RTREENODE * node, RTREEBRANCH * br, RTREENODE ** new_node);
/* *
* Initialize a RTREENODE structure.
*/
void RTreeInitNode( RTREENODE * node );
/* *
* Make a new node and initialize to have all branch cells empty.
*/
RTREENODE * RTreeNewNode( void );
void RTreeFreeNode( RTREENODE * node );
/* *
* Print out the data in a node.
*/
void RTreePrintNode( RTREENODE * node, int depth );
/* *
* Find the smallest rectangle that includes all rectangles in branches of a node.
*/
RTREEMBR RTreeNodeCover( RTREENODE * node );
/* *
* Pick a branch. Pick the one that will need the smallest increase
* in area to accomodate the new rectangle. This will result in the
* least total area for the covering rectangles in the current node.
* In case of a tie, pick the one which was smaller before, to get
* the best resolution when searching.
*/
int RTreePickBranch( RTREEMBR * rc, RTREENODE * node);
/* *
* Add a branch to a node. Split the node if necessary.
* Returns 0 if node not split. Old node updated.
* Returns 1 if node split, sets *new_node to address of new node.
* Old node updated, becomes one of two.
*/
int RTreeAddBranch( RTREEBRANCH * br, RTREENODE * node, RTREENODE ** new_node);
/* *
* Disconnect a dependent node.
*/
void RTreeDisconnectBranch( RTREENODE * node, int i );
/* *
* Destroy (free) node recursively.
*/
void RTreeDestroyNode ( RTREENODE * node );
/* *
* Create a new rtree index, empty. Consists of a single node.
*/
RTREENODE * RTreeCreate( void );
/* *
* Destroy a rtree root must be a root of rtree. Free all memory.
*/
void RTreeDestroy(RTREENODE * root);
/* *
* Search in an index tree or subtree for all data rectangles that overlap the argument rectangle.
* Return the number of qualifying data rects.
*/
int RTreeSearch( RTREENODE * node, RTREEMBR * rc, pfnSearchHitCallback pfnSHCB, void * pfnParam);
/* *
* Insert a data rectangle into an index structure.
* RTreeInsertRect provides for splitting the root;
* returns 1 if root was split, 0 if it was not.
* The level argument specifies the number of steps up from the leaf
* level to insert; e.g. a data rectangle goes in at level = 0.
* _RTreeInsertRect does the recursion.
*/
int RTreeInsertRect( RTREEMBR * rc, int tid, RTREENODE ** root, int level);
/* *
* Delete a data rectangle from an index structure.
* Pass in a pointer to a RTREEMBR, the tid of the record, ptr to ptr to root node.
* Returns 1 if record not found, 0 if success.
* RTreeDeleteRect provides for eliminating the root.
*/
int RTreeDeleteRect( RTREEMBR * rc, int tid, RTREENODE ** root);
#endif /* RTREE_H_INCLUDED */
RTree.C文件:
/* ***************************************************************************
* RTree.C
*
* MODULE: R-Tree library
*
* AUTHOR(S): Antonin Guttman - original code
* Daniel Green (green@superliminal.com) - major clean-up
* and implementation of bounding spheres
*
* PURPOSE: Multi Dimensional Index
*
* COPYRIGHT: (C) 2001 by the GRASS Development Team
*
* This program is free software under the GNU General Public
* License (>=v2). Read the file COPYING that comes with GRASS
* for details.
*
* LAST MODIFY: ZhangLiang (cheungmine@gmail.com) - 2007-11
**************************************************************************** */
#include < stdio.h >
#include < stdlib.h >
#include < assert.h >
#include < float .h >
#include < math.h >
#include " rtree.h "
#define METHODS 1
/* variables for finding a partition */
typedef struct _RTREEPARTITION
int partition[MAXCARD + 1 ];
int total;
int minfill;
int taken[MAXCARD + 1 ];
int count[ 2 ];
RTREEMBR cover[ 2 ];
REALTYPE area[ 2 ];
RTREEPARTITION;
RTREEBRANCH BranchBuf[MAXCARD + 1 ];
int BranchCount;
RTREEMBR CoverSplit;
REALTYPE CoverSplitArea;
RTREEPARTITION Partitions[METHODS];
#define BIG_NUM (FLT_MAX/4.0)
#define INVALID_RECT(x) ((x)->bound[0] > (x)->bound[DIMS_NUMB])
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define MAX(a, b) ((a) > (b) ? (a) : (b))
int NODECARD = MAXCARD;
int LEAFCARD = MAXCARD;
/* balance criteria for node splitting */
/* NOTE: can be changed if needed. */
#define MINNODEFILL (NODECARD / 2)
#define MINLEAFFILL (LEAFCARD / 2)
#define MAXKIDS(n) ((n)->level > 0 ? NODECARD : LEAFCARD)
#define MINFILL(n) ((n)->level > 0 ? MINNODEFILL : MINLEAFFILL)
static int set_max( int * which, int new_max)
if ( 2 > new_max || new_max > MAXCARD)
return 0 ;
* which = new_max;
return 1 ;
/* *
* Load branch buffer with branches from full node plus the extra branch.
*/
static void _RTreeGetBranches( RTREENODE * node, RTREEBRANCH * br)
int i;
assert(node && br);
/* load the branch buffer */
for (i = 0 ; i < MAXKIDS(node); i ++ )
assert(node -> branch[i].child); /* n should have every entry full */
BranchBuf[i] = node -> branch[i];
BranchBuf[MAXKIDS(node)] = * br;
BranchCount = MAXKIDS(node) + 1 ;
/* calculate mbr containing all in the set */
CoverSplit = BranchBuf[ 0 ].mbr;
for (i = 1 ; i < MAXKIDS(node) + 1 ; i ++ )
CoverSplit = RTreeCombineRect( & CoverSplit, & BranchBuf[i].mbr);
CoverSplitArea = RTreeRectSphericalVolume( & CoverSplit);
RTreeInitNode(node);
/* *
* Put a branch in one of the groups.
*/
static void _RTreeClassify( int i, int group, RTREEPARTITION * p)
assert(p);
assert( ! p -> taken[i]);
p -> partition[i] = group;
p -> taken[i] = TRUE;
if (p -> count[group] == 0 )
p -> cover[group] = BranchBuf[i].mbr;
else
p -> cover[group] = RTreeCombineRect( & BranchBuf[i].mbr, & p -> cover[group]);
p -> area[group] = RTreeRectSphericalVolume( & p -> cover[group]);
p -> count[group] ++ ;
/* *
* Pick two rects from set to be the first elements of the two groups.
* Pick the two that waste the most area if covered by a single rectangle.
*/
static void _RTreePickSeeds(RTREEPARTITION * p)
int i, j, seed0 = 0 , seed1 = 0 ;
REALTYPE worst, waste, area[MAXCARD + 1 ];
for (i = 0 ; i < p -> total; i ++ )
area[i] = RTreeRectSphericalVolume( & BranchBuf[i].mbr);
worst = - CoverSplitArea - 1 ;
for (i = 0 ; i < p -> total - 1 ; i ++ )
for (j = i + 1 ; j < p -> total; j ++ )
RTREEMBR one_rect;
one_rect = RTreeCombineRect( & BranchBuf[i].mbr, & BranchBuf[j].mbr);
waste = RTreeRectSphericalVolume( & one_rect) - area[i] - area[j];
if (waste > worst)
worst = waste;
seed0 = i;
seed1 = j;
_RTreeClassify(seed0, 0 , p);
_RTreeClassify(seed1, 1 , p);
/* *
* Copy branches from the buffer into two nodes according to the partition.
*/
static void _RTreeLoadNodes( RTREENODE * n, RTREENODE * q, RTREEPARTITION * p)
int i;
assert(n && q && p);
for (i = 0 ; i < p -> total; i ++ )
assert(p -> partition[i] == 0 || p -> partition[i] == 1 );
if (p -> partition[i] == 0 )
RTreeAddBranch( & BranchBuf[i], n, NULL);
else if (p -> partition[i] == 1 )
RTreeAddBranch( & BranchBuf[i], q, NULL);
/* *
* Initialize a RTREEPARTITION structure.
*/
static void _RTreeInitPart( RTREEPARTITION * p, int maxrects, int minfill)
int i;
assert(p);
p -> count[ 0 ] = p -> count[ 1 ] = 0 ;
p -> cover[ 0 ] = p -> cover[ 1 ] = RTreeNullRect();
p -> area[ 0 ] = p -> area[ 1 ] = (REALTYPE) 0 ;
p -> total = maxrects;
p -> minfill = minfill;
for (i = 0 ; i < maxrects; i ++ )
p -> taken[i] = FALSE;
p -> partition[i] = - 1 ;
/* *
* Print out data for a partition from RTREEPARTITION struct.
*/
static void _RTreePrintPart( RTREEPARTITION * p)
int i;
assert(p);
fprintf (stdout, " partition: " );
for (i = 0 ; i < p -> total; i ++ )
fprintf (stdout, " %3d " , i);
fprintf (stdout, " " );
for (i = 0 ; i < p -> total; i ++ )
if (p -> taken[i])
fprintf (stdout, " t " );
else
fprintf (stdout, " " );
fprintf (stdout, " " );
for (i = 0 ; i < p -> total; i ++ )
fprintf (stdout, " %3d " , p -> partition[i]);
fprintf (stdout, " " );
fprintf (stdout, " count[0] = %d area = %f " , p -> count[ 0 ], p -> area[ 0 ]);
fprintf (stdout, " count[1] = %d area = %f " , p -> count[ 1 ], p -> area[ 1 ]);
if (p -> area[ 0 ] + p -> area[ 1 ] > 0 )
fprintf (stdout, " total area = %f effectiveness = %3.2f " ,
p -> area[ 0 ] + p -> area[ 1 ], ( float )CoverSplitArea / (p -> area[ 0 ] + p -> area[ 1 ]));
fprintf (stdout, " cover[0]: " );
RTreePrintRect( & p -> cover[ 0 ], 0 );
fprintf (stdout, " cover[1]: " );
RTreePrintRect( & p -> cover[ 1 ], 0 );
/* *
* Method #0 for choosing a partition:
* As the seeds for the two groups, pick the two rects that would waste the
* most area if covered by a single rectangle, i.e. evidently the worst pair
* to have in the same group.
* Of the remaining, one at a time is chosen to be put in one of the two groups.
* The one chosen is the one with the greatest difference in area expansion
* depending on which group - the mbr most strongly attracted to one group
* and repelled from the other.
* If one group gets too full (more would force other group to violate min
* fill requirement) then other group gets the rest.
* These last are the ones that can go in either group most easily.
*/
static void _RTreeMethodZero( RTREEPARTITION * p, int minfill )
int i;
REALTYPE biggestDiff;
int group, chosen = 0 , betterGroup = 0 ;
assert(p);
_RTreeInitPart(p, BranchCount, minfill);
_RTreePickSeeds(p);
while (p -> count[ 0 ] + p -> count[ 1 ] < p -> total &&
p -> count[ 0 ] < p -> total - p -> minfill &&
p -> count[ 1 ] < p -> total - p -> minfill)
biggestDiff = (REALTYPE) - 1 .;
for (i = 0 ; i Rtree实现多维空间搜索