MIT 18.02 多变量微积分总结(Part I)

Posted Xurtle

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了MIT 18.02 多变量微积分总结(Part I)相关的知识,希望对你有一定的参考价值。

引言

这篇文章是对 Multivariable Calculus 课程的知识点总结。

Dot Product

Because the dot product results in a scalar, it is also called the scalar product.

algebraic view of dot product

给定两个向量 a⃗ =a1,a2,a3 b⃗ =b1,b2,b3 ,它们的点积定义如下:

a⃗ b⃗ =a1b1+a2b2+a3b3

properties of dot product

下面属性的证明大部分都是一些代数计算,根据点积的 algebraic view,你可以很轻松地证明出来。

geometric view of dot product

下面定理用 The Law of Cosines 来证明,详细步骤参考:Dot Product

a⃗ b⃗ =|a⃗ ||b⃗ |cos(θ)

这个公式通常不是用来计算点积,而是找出2个向量之间的角。有了这个公式,点积可以让我们很容易地判断出2个向量是否 perpendicular or parallel. (When two vectors are perpendicular to each other we say they are orthogonal.)

Now, if two vectors are orthogonal then we know that the angle between them is 90 degrees:

a⃗ b⃗ =0

Likewise, if two vectors are parallel then the angle between them is either 0 degrees (pointing in the same direction) or 180 degrees (pointing in the opposite direction):

a⃗ b⃗ =|a⃗ ||b⃗ |  (θ=0)a⃗ b⃗ =|a⃗ ||b⃗ |  (θ=180)

Projections

下面2幅图是 the projection of b⃗  onto a⃗  , denoted by proja⃗ b⃗ 

There is an nice formula for finding the projection of b⃗  onto a⃗  . Here it is,

proja⃗ b⃗ =a⃗ b⃗ |a⃗ |2a⃗ 

Note that we also need to be very careful with notation here. The projection of a⃗  onto MIT 18.01 单变量微积分总结

MIT 18.06 线性代数总结(Part I)

MIT 18.06 线性代数总结(Part II)

人脑天生会算微积分,并应用于精准控制奔跑,来自MIT团队

MIT 18.03 写给初学者的微积分校对活动 | ApacheCN

MIT 6.828 JOS????????????10. Lab 1 Part 3: The kernel