LWC 72: 786. K-th Smallest Prime Fraction
Posted Demon的黑与白
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了LWC 72: 786. K-th Smallest Prime Fraction相关的知识,希望对你有一定的参考价值。
LWC 72: 786. K-th Smallest Prime Fraction
传送门:786. K-th Smallest Prime Fraction
Problem:
A sorted list A contains 1, plus some number of primes. Then, for every p < q in the list, we consider the fraction p/q.
What is the K-th smallest fraction considered? Return your answer as an array of ints, where answer[0] = p and answer1 = q.
Examples:
Input: A = [1, 2, 3, 5], K = 3
Output: [2, 5]
Explanation:
The fractions to be considered in sorted order are:
1/5, 1/3, 2/5, 1/2, 3/5, 2/3.
The third fraction is 2/5.Input: A = [1, 7], K = 1
Output: [1, 7]
Note:
- A will have length between 2 and 2000.
- Each A[i] will be between 1 and 30000.
- K will be between 1 and A.length * (A.length + 1) / 2.
思路1:
一种聪明的做法,如果A = [1, 7, 23, 29, 47],那么有:
1/47 < 1/29 < 1/23 < 1/7
7/47 < 7/29 < 7/23
23/47 < 23/29
29/47
可以采用优先队列的方法,把第一列先送入队列,因为他们一定是每行的最小,选出最小的之后,加入该行的后续元素。直到找到K-1个最小的元素。
代码如下:
public int[] kthSmallestPrimeFraction(int[] a, int k)
int n = a.length;
PriorityQueue<int[]> pq = new PriorityQueue<>(new Comparator<int[]>()
@Override
public int compare(int[] o1, int[] o2)
int s1 = a[o1[0]] * a[o2[1]];
int s2 = a[o2[0]] * a[o1[1]];
return s1 - s2;
);
for (int i = 0; i < n-1; i++)
pq.add(new int[]i, n-1);
for (int i = 0; i < k-1; i++)
int[] pop = pq.poll();
if (pop[1] - 1 > pop[0])
pop[1]--;
pq.offer(pop);
int[] peek = pq.peek();
return new int[]a[peek[0]], a[peek[1]];
思路2:
二分,先找到这个第k小的数,接着再小范围暴力搜索,居然能过。
代码如下:
public int[] kthSmallestPrimeFraction(int[] a, int K)
double low = 0, high = 1;
double eps = 1e-8;
int n = a.length;
for(int rep = 0; rep < 50; ++rep)
double x = low + (high-low) / 2;
int num = 0;
for(int i = 0;i < n;i++)
int ind = Arrays.binarySearch(a, (int)(x * a[i]));
if(ind < 0) ind = -ind - 2;
num += ind + 1;
if(num >= K)
high = x;
else
low = x;
for (int i = 0; i < n; ++i)
double find = a[i] * high;
int idx = Arrays.binarySearch(a, (int)find);
if (idx < 0) idx = -idx;
for (int j = -1; j <= 1; ++j)
if (j + idx >= 0 && j + idx < n && Math.abs(a[j + idx] - find) < eps)
return new int[] a[j + idx], a[i];
return new int[]-1, -1;
以上是关于LWC 72: 786. K-th Smallest Prime Fraction的主要内容,如果未能解决你的问题,请参考以下文章
LWC 72: 784. Letter Case Permutation
LWC 72: 785. Is Graph Bipartite?