Redis学习笔记24——替换策略:缓存满了怎么办

Posted qq_34132502

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Redis学习笔记24——替换策略:缓存满了怎么办相关的知识,希望对你有一定的参考价值。

如果把所有的数据都放入缓存是否很好?
并不,根据“八二原理”,80% 的请求实际只访问了 20% 的数据,所以全部放入缓存的性价比很低。

解决这个问题就涉及到缓存系统的一个重要机制,即缓存数据的淘汰机制。简单来说,数据淘汰机制包括两步:第一,根据一定的策略,筛选出对应用访问来说“不重要”的数据;第二,将这些数据从缓存中删除,为新来的数据腾出空间。

设置多大的缓存合适?

根据“八二原理”,也就是把缓存空间容量设置为总数据量的 20% 的话,就有可能拦截到 80% 的访问。但只是有可能,具体情况还是需要根据业务场景来判断。

比如说,在商品促销时,热门商品的信息可能只占到总商品数据信息量的 5%,而这些商品信息承载的可能是超过 90% 的访问请求。这时,我们只要缓存这 5% 的数据,就能获得很好的性能收益。

另一方面,如果业务应用要对所有商品信息进行查询统计,这时候,即使按照“八二原理”缓存了 20% 的商品数据,也不能获得很好的访问性能,因为 80% 的数据仍然需要从后端数据库中获取。

Redis缓存有哪些淘汰策略

不进行数据淘汰的策略,只有 noeviction 这一种。

会进行淘汰的 7 种策略,我们可以再进一步根据淘汰候选数据集的范围把它们分成两类:

  • 在设置了过期时间的数据中进行淘汰,包括 volatile-random、volatile-ttl、volatile-lru、volatile-lfu(Redis 4.0 后新增)四种
  • 在所有数据范围内进行淘汰,包括 allkeys-lru、allkeys-random、allkeys-lfu(Redis 4.0 后新增)三种。


volatile*这四种淘汰策略中,它们筛选的候选数据范围,被限制在已经设置了过期时间的键值对上。也正因为此,即使缓存没有写满,这些数据如果过期了,也会被删除

allkeys*这三种淘汰策略中,备选淘汰数据范围,就扩大到了所有键值对。

  • *random,从所有键值对中随机选择并删除数据;
  • *lru,使用 LRU 算法在所有数据中进行筛选;
  • *lfu,使用 LFU 算法在所有数据中进行筛选。

Redis中的LUR算法

其实,LRU 算法背后的想法非常朴素:它认为刚刚被访问的数据,肯定还会被再次访问,所以就把它放在 MRU 端;长久不访问的数据,肯定就不会再被访问了,所以就让它逐渐后移到 LRU 端,在缓存满时,就优先删除它。

不过,LRU 算法在实际实现时,需要用链表管理所有的缓存数据,这会带来额外的空间开销。而且,当有数据被访问时,需要在链表上把该数据移动到 MRU 端,如果有大量数据被访问,就会带来很多链表移动操作,会很耗时,进而会降低 Redis 缓存性能。

所以,在 Redis 中,LRU 算法被做了简化,以减轻数据淘汰对缓存性能的影响。具体来说,Redis 默认会记录每个数据的最近一次访问的时间戳(由键值对数据结构 RedisObject 中的 lru 字段记录)。然后,Redis 在决定淘汰的数据时,第一次会随机选出 N 个数据,把它们作为一个候选集合。接下来,Redis 会比较这 N 个数据的 lru 字段,把 lru 字段值最小的数据从缓存中淘汰出去。

Redis 提供了一个配置参数 maxmemory-samples,这个参数就是 Redis 选出的数据个数 N。例如,我们执行如下命令,可以让 Redis 选出 100 个数据作为候选数据集:

CONFIG SET maxmemory-samples 100

当需要再次淘汰数据时,Redis 需要挑选数据进入第一次淘汰时创建的候选集合。这儿的挑选标准是:能进入候选集合的数据的 lru 字段值必须小于候选集合中最小的 lru 值。当有新数据进入候选数据集后,如果候选数据集中的数据个数达到了 maxmemory-samples,Redis 就把候选数据集中 lru 字段值最小的数据淘汰出去。

建议

  • 优先使用 allkeys-lru 策略。这样,可以充分利用 LRU 这一经典缓存算法的优势,把最近最常访问的数据留在缓存中,提升应用的访问性能。如果你的业务数据中有明显的冷热数据区分,我建议你使用 allkeys-lru 策略。
  • 如果业务应用中的数据访问频率相差不大,没有明显的冷热数据区分,建议使用 allkeys-random 策略,随机选择淘汰的数据就行。
  • 如果你的业务中有置顶的需求,比如置顶新闻、置顶视频,那么,可以使用 volatile-lru 策略,同时不给这些置顶数据设置过期时间。这样一来,这些需要置顶的数据一直不会被删除,而其他数据会在过期时根据 LRU 规则进行筛选。

如何处理被淘汰的数据

一般来说,一旦被淘汰的数据选定后,如果这个数据是干净数据,那么我们就直接删除;如果这个数据是脏数据,我们需要把它写回数据库

那怎么判断一个数据到底是干净的还是脏的呢?干净数据和脏数据的区别就在于,和最初从后端数据库里读取时的值相比,有没有被修改过。干净数据一直没有被修改,所以后端数据库里的数据也是最新值。在替换时,它可以被直接删除。而脏数据就是曾经被修改过的,已经和后端数据库中保存的数据不一致了。此时,如果不把脏数据写回到数据库中,这个数据的最新值就丢失了,就会影响应用的正常使用。

以上是关于Redis学习笔记24——替换策略:缓存满了怎么办的主要内容,如果未能解决你的问题,请参考以下文章

Redis内存满了怎么办?

Redis过期键删除策略和内存淘汰策略

Redis过期删除策略和内存淘汰策略

Redis过期删除策略和内存淘汰策略

redis内存满了怎么办

Day750.Redis缓存淘汰替换策略:Redis是如何工作的 -Redis 核心技术与实战