基于Python贝叶斯优化XGBoost算法调参报错“TypeError: ‘float‘ object is not subscriptable”

Posted 肖永威

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了基于Python贝叶斯优化XGBoost算法调参报错“TypeError: ‘float‘ object is not subscriptable”相关的知识,希望对你有一定的参考价值。

基于Python贝叶斯优化XGBoost算法调参运行情况如下:

itertargetcolsam…gammamax_depthmin_ch…subsample
10.93980.80430.74836.0276.70.6514
20.94050.72310.26767.382347.60.7886
30.93880.80480.71676.818708.60.6096
40.94210.86760.47568.235155.30.6693
50.93990.90020.97147.254569.20.9067

报出如下错误:

Traceback (most recent call last):
......
    suggestion = acq_max(
  File "/usr/local/python3/lib/python3.8/site-packages/bayes_opt/util.py", line 65, in acq_max
    if max_acq is None or -res.fun[0] >= max_acq:
TypeError: 'float' object is not subscriptable

参考关键代码如下:

def _xgb_logistic_evaluate(max_depth, subsample, gamma, colsample_bytree, min_child_weight):
    import xgboost as xgb

    params = 
        'objective': 'binary:logistic',  # 逻辑回归二分类的问题
        'eval_metric': 'auc',
        'max_depth': int(max_depth),
        'subsample': subsample,  # 0.8
        'eta': 0.3,
        'gamma': gamma,
        'colsample_bytree': colsample_bytree,
        'min_child_weight': min_child_weight

    cv_result = xgb.cv(params, self.dtrain,
                       num_boost_round=30, nfold=5)

    return 1.0 * cv_result['test-auc-mean'].iloc[-1]
    
def evaluate(self, bo_f, pbounds, init_points, n_iter):

    bo = BayesianOptimization(
        f=bo_f,   # 目标函数
        pbounds=pbounds,  # 取值空间
        verbose=2,  # verbose = 2 时打印全部,verbose = 1 时打印运行中发现的最大值,verbose = 0 将什么都不打印
        random_state=1,
        )

    bo.maximize(init_points=init_points,   # 随机搜索的步数
                n_iter=n_iter,       # 执行贝叶斯优化迭代次数
                acq='ei')

    print(bo.max)
    res = bo.max
    params_max = res['params']

    return params_max

参考stackoverflow上的解释:

This is related to a change in scipy 1.8.0, One should use -np.squeeze(res.fun) instead of -res.fun[0]

https://github.com/fmfn/BayesianOptimization/issues/300

The comments in the bug report indicate reverting to scipy 1.7.0 fixes this,

UPDATED: It seems the fix has been merged in the BayesianOptimization package, but the new maintainer is unable to push a release to pypi https://github.com/fmfn/BayesianOptimization/issues/300#issuecomment-1146903850

因此,卸载当前scipy 1.8.1,退回到scipy 1.7.0。

[root@DeepLearning bin]# pip3 uninstall scipy
......
  Successfully uninstalled scipy-1.8.1
[root@DeepLearning bin]# pip3 install -i https://pypi.tuna.tsinghua.edu.cn/simple scipy==1.7
  Successfully installed scipy-1.7.0

成功再运行贝叶斯优化调参程序。

参考:

seul233. python使用贝叶斯优化随机森林时出现TypeError: ‘float’ object is not subscriptable. CSDN博客. 2022.03

https://stackoverflow.com/questions/71460894/bayesianoptimization-fails-due-to-float-error

以上是关于基于Python贝叶斯优化XGBoost算法调参报错“TypeError: ‘float‘ object is not subscriptable”的主要内容,如果未能解决你的问题,请参考以下文章

基于Python贝叶斯优化XGBoost算法调参报错“TypeError: ‘float‘ object is not subscriptable”

使用贝叶斯优化工具实践XGBoost回归模型调参

使用贝叶斯优化工具实践XGBoost回归模型调参

随机森林算法及贝叶斯优化调参Python实践

随机森林算法及贝叶斯优化调参Python实践

随机森林算法及贝叶斯优化调参Python实践