(等价无穷小与幂级数)泰勒公式

Posted 实在人dx

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了(等价无穷小与幂级数)泰勒公式相关的知识,希望对你有一定的参考价值。

泰勒公式的麦克劳林展开式与等价无穷小

f ( x ) = f ( 0 ) + f ′ ( 0 ) x + f ′ ′ ( 0 ) 2 x 2 + f ′ ′ ′ ( 0 ) 3 ! x 3 + . . . + f ( n ) ( 0 ) n ! x n + o ( x n ) f(x)=f(0)+f'(0)x+\\fracf''(0)2x^2+\\fracf'''(0)3!x^3+...+\\fracf^(n)(0)n!x^n+o(x^n) f(x)=f(0)+f(0)x+2f′′(0)x2+3!f′′′(0)x3+...+n!f(n)(0)xn+o(xn)


x → 0 x→0 x0

s i n x = x − 1 6 x 3 + o ( x 3 ) sinx=x-\\frac16x^3+o(x^3) sinx=x61x3+o(x3)
s i n x sinx sinx ~ x x x
s i n x − x sinx-x sinxx ~ − 1 6 x 3 -\\frac16x^3 61x3
x − s i n x x-sinx xsinx ~ 1 6 x 3 \\frac16x^3 61x3


a r c s i n x = x + 1 6 x 3 + o ( x 3 ) arcsinx=x+\\frac16x^3+o(x^3) arcsinx=x+61x3+o(x3)
a r c s i n x arcsinx arcsinx ~ x x x


t a n x = x + 1 3 x 3 + o ( x 3 ) tanx=x+\\frac13x^3+o(x^3) tanx=x+31x3+o(x3)
t a n x − x tanx-x tanxx ~ 1 3 x 3 \\frac13x^3 31x3
x − t a n x x-tanx xtanx ~ − 1 3 x 3 -\\frac13x^3 31x3


a r c t a n x = x − 1 3 x 3 + o ( x 3 ) arctanx=x-\\frac13x^3+o(x^3) arctanx=x31x3+o(x3)
a r c t a n x arctanx arctanx ~ x x x
x − a r c t a n x x-arctanx xarctanx ~ 1 3 x 3 \\frac13x^3 31x3


c o s x = 1 − 1 2 x 2 + 1 4 ! x 4 + o ( x 4 ) cosx=1-\\frac12x^2+\\frac14!x^4+o(x^4) cosx=121x2+4!1x4+o(x4)
1 − c o s x 1-cosx 1cosx ~ 1 2 x 2 \\frac12x^2 21x2


l n ( 1 + x ) = x − 1 2 x 2 + 1 3 x 3 + o ( x 3 ) ln(1+x)=x-\\frac12x^2+\\frac13x^3+o(x^3) ln(1+x)=x21x2+31x3+o(x3)
l n ( 1 + x ) ln(1+x) ln(1+x) ~ x x x
l n ( 1 + x ) − x ln(1+x)-x ln(1+x)x ~ − 1 2 x 2 -\\frac12x^2 21x2
x − l n ( 1 + x ) x-ln(1+x) xln(1+x) ~ 1 2 x 2 \\frac12x^2 2(等价无穷小与幂级数)泰勒公式

等价无穷小常用泰勒展开式

笔记快速理解傅里叶级数

笔记快速理解傅里叶级数

笔记快速理解傅里叶级数

泰勒级数&傅立叶级数