Python基础内置函数filter详解

Posted 走召大爷

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Python基础内置函数filter详解相关的知识,希望对你有一定的参考价值。

filter,顾名思义,就是一个过滤器。其作用是从列表(或其他序列类型)中筛选出满足条件的子列表,filterpython的内置函数,无须import即可直接使用。

1 filter的基础用法

对于列表(或其他序列类型),如果希望从中筛选出满足某个约束条件的子列表,我们一般的做法是使用一个for循环遍历每个元素然后执行相同约束条件判断,将满足条件的放入新的子列表中。例如,从列表中找出所有偶数子列表,并按对应的先后顺序放入子列表中:

a = [1, 2, 3, 4, 5]
b  = []
for i in a:
    if i % 2 == 0:
        b.append(i)

那么如果使用filter的话,使用filter函数使得代码变得更简洁:

a = [1, 2, 3, 4, 5]
def check(i): return i % 2 == 0
b = list(filter(check, a))

2 filter与for循环性能对比

前面在讲map时,我们知道map函数除了能让代码更优雅以外,使用map比使用for循环速度更快。同样的,使用filter远比使用for循环快。我们做个实验,从长为100000的列表中,查找偶数对比耗时:

import time

def test_for(length):
    sub_list = []
    begin = time.perf_counter()
    for i in range(length):
        if i % 2 == 0:
            sub_list.append(i)
    end = time.perf_counter()
    print('for循环耗时:', (end - begin))

def test_filter(length):
    def check(i):
        return i % 2 == 0
    begin = time.perf_counter()
    sub_list = filter(check, range(length))
    end = time.perf_counter()
    print('filter耗时:', (end - begin))

test_for(100000)
test_filter(100000)

输出结果如下:

for循环耗时: 0.015271199999999999
filter耗时: 1.4000000000000123e-05

从输出结果可以看到:

十万级别数据上,filter的速度大约是for循环的1000倍。

当然了,具体的速度对比方面跟具体的硬件有关,一般而言,如果本地机器硬件配置越高,那么这个倍数越高。所以,平时写代码时,可以稍微注意一下,是否可以使用更高效的替代方案。

如果您觉得本文对你有帮助,欢迎关注我【Python学习实战】,第一时间获取最新更新。每天学习一点点,每天进步一点点。

以上是关于Python基础内置函数filter详解的主要内容,如果未能解决你的问题,请参考以下文章

Python基础内置函数filter详解

Python基础篇第2篇: Python内置函数--map/reduce/filter/sorted

python基础:内置函数zip,map,filter

python基础学习第六天

Python基础学习第十一节 内置函数详解

Python基础- 函数式编程