Spark:WordCount 步骤
Posted Frank201608
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Spark:WordCount 步骤相关的知识,希望对你有一定的参考价值。
scala> val data = sc.textFile("/library/wordcount/input/Data")
//data: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[9] at textFile as <console>:27
scala> val flatted = data.flatMap(_.split(" "))
//flatted: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[10] as flatMap as <console>:29
scala> flatted .toDebugString
res5: String =
(88) MapPartitionsRDD[10] as flatMap as <console>:29
| MapPartitionsRDD[9] at textFile as <console>:27
| /library/wordcount/input/Data HadoopRDD[8] at textFile as <console>:27
scala> val mapped = flatted .map(word ==>(word,1))
//mapped : org.apache.spark.rdd.RDD[(String, Int)] = MapPartitionsRDD[11] at map as <console>:31
scala> mapped.toDebugString
(88) MapPartitionsRDD[11] at map at <console>:31 []
| MapPartitionsRDD[10] at flatMap at <console>:29 []
| MapPartitionsRDD[9] at textFile at <console>:27 []
| /library/wordcount/input/Data HadoopRDD[8] at textFile at <console>:27 []
scala> val reduced = mapped.reduceByKey(_+_)
reduced: org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[12] as reduceByKey as <console>:33
scala> reduced.toDebugString
(88) ShuffledRDD[12] at reduceByKey as <console>:33 []
+-(88) MapPartitionsRDD[11] at map at <console>:31 []
| MapPartitionsRDD[10] at flatMap as <console>:29 []
| MapPartitionsRDD[9] at textFile as <console>:27 []
| /library/wordcount/input/Data HadoopRDD[8] at textFile at <console>:27 []
scala> reduced.savaAsTextFile("/library/wordcount/output")
DAG图如下:
以上是关于Spark:WordCount 步骤的主要内容,如果未能解决你的问题,请参考以下文章