二叉平衡搜索树——AVL树

Posted ZDF0414

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了二叉平衡搜索树——AVL树相关的知识,希望对你有一定的参考价值。

AVL树:保持二叉树的高度平衡,尽量降低二叉树的高度,减少树的平均搜索长度。

AVL树的性质:(1)左子树和右子树的高度之差的绝对值不超过1

                        (2)树中的每个左子树和右子树都是AVL树

结点的平衡因子 = 右边高度 — 左边高度

以下为需要进行结点调平的四种情况:

(1)当当前结点的平衡因子为 -1,其父结点 时的平衡因子为 -2,右单旋调整


(2)当当前结点的平衡因子为 1,其父结点 时的平衡因子为  2,左单旋调整


(3)当当前结点的平衡因子为 -1,其父结点 时的平衡因子为 2,右左双旋调整


(4)当当前结点的平衡因子为  1,其父结点 时的平衡因子为 -2,左右双旋调整




平衡因子的调整方式:从当前不平衡结点开始,依次向上调整,根据孩子结点的左右情况,对平衡因子 +1/-1操作,当调整到有结点的平衡因子为0时,即调整结束。


部分相关操作如下:

#pragma once
template<class K,class V>
struct AVLTreeNode

	AVLTreeNode<K, V>* _parent;
	AVLTreeNode<K, V>* _left;
	AVLTreeNode<K, V>* _right;
	K _key;
	V _value;
	int _bf;
	AVLTreeNode<K,V>(const K& key, const V& value)
		:_parent(NULL)
		, _left(NULL)
		, _right(NULL)
		, _key(key)
		, _value(value)
		, _bf(0)
	
;

template<class K,class V>
class AVLTree

	typedef AVLTreeNode<K, V>  Node;
public:
	AVLTree()
		:_root(NULL)
	
	bool Insert(const K&key, const V&value)
	
		if (_root == NULL)
		
			_root = new Node(key, value);
			return true;
		
		Node*parent = NULL;
		Node*cur = _root;

		//1、找到插入的位置
		while (cur)
		
			if (cur->_key < key)
			
				parent = cur;
				cur = cur->_right;
			
			else if (cur->_key>key)
			
				parent = cur;
				cur = cur->_left;
			
			else
				return false;
		
		cur = new Node(key, value);
		cur->_parent = parent;
		if (key < parent->_key)
			parent->_left = cur;
		else
			parent->_right = cur;
		//2.调整平衡因子
		while (parent)
		
			if (parent->_left == cur)
				parent->_bf--;
			else
				parent->_bf++;
			if (parent->_bf == 0)
				break;
			else if (parent->_bf == -1 || parent->_bf == 1)
			
				cur = parent;
				parent = parent->_parent;
			
			else//开始旋转 -2/2
			
				if (parent->_bf == -2)
				
					if (cur->_bf == -1)
						RorateR(parent);
					else
					
						RorateLR(parent);
					
				
				else
				
					if (cur->_bf == 1)
						RorateL(parent);
					else
					
						RorateRL(parent);
					
				
				break;
			
		
		return true;
	
	bool IsBlance()
	
		return _IsBlance(_root);
	
	void InOrder()
	
		_InOrder(_root);
		cout << endl;
	
protected:
	int Height(Node*root)
	
		if (root == NULL)
			return 0;
		else if (root->_left == NULL&&root->_right == NULL)
			return 1;
		else
		
			int left = Height(root->_left);
			int right = Height(root->_right);
			return 1 + (left > right ? left : right);
		
	
	bool _IsBlance(Node*root)
	
		if (root == NULL)
			return true;
		int left = Height(root->_left);
		int right = Height(root->_right);
		if (abs(right - left) <= 1)
			return _IsBlance(root->_left) && _IsBlance(root->_right);
		else
			return false;
	
	void RorateR(Node*parent)
	
		Node* subL = parent->_left;
		Node* subLR = subL->_right;
		Node*ppNode = parent->_parent;
		parent->_left = subLR;
		if (subLR)
			subLR->_parent = parent;
		subL->_right = parent;
		parent->_parent = subL;
		if (ppNode == NULL)
		
			_root = subL;
			subL->_parent = NULL;
		
		else
		
			if (ppNode->_left == parent)
				ppNode->_left = subL;
			else
				ppNode->_right = subL;
			subL->_parent = ppNode;
		
		parent->_bf = subL->_bf = 0;
	
	void RorateL(Node*parent)
	
		Node* subR = parent->_right;
		Node* subRL = subR->_left;
		Node* ppNode = parent->_parent;
		parent->_right = subRL;
		if (subRL)
			subRL->_parent = parent;
		subR->_left = parent;
		parent->_parent = subR;
		if (ppNode == NULL)
		
			_root = subR;
			subR->_parent = NULL;
		
		else
		
			if (ppNode->_left == parent)
				ppNode->_left = subR;
			else
				ppNode->_right = subR;
			subR->_parent = ppNode;
		
		parent->_bf = subR->_bf= 0;
	

	void RorateLR(Node*parent)
	
		Node* subL = parent->_left;
		Node* subLR = subL->_right;
		int bf = subLR->_bf;
		RorateL(parent->_left);
		RorateR(parent);
		if (bf == 1)
		
			subL->_bf = -1;
			parent->_bf = 0;
		
		else if (bf == -1)
		
			subL->_bf = 0;
			parent->_bf = 1;
		
		
	
	void RorateRL(Node*parent)
	
		Node* subR = parent->_right;
		Node* subRL = subR->_left;
		int bf = subRL->_bf;
		RorateR(parent->_right);
		RorateL(parent);
		if (bf == 1)
		
			subR->_bf = 0;
			parent->_bf = -1;
		
		else if (bf == -1)
		
			subR->_bf = 1;
			parent->_bf = 0;
		
	
	void _InOrder(Node*root)
	
		if (root == NULL)
			return;
		_InOrder(root->_left);
		cout << root->_key << " ";
		_InOrder(root->_right);
	
public:
	Node* _root;
;









以上是关于二叉平衡搜索树——AVL树的主要内容,如果未能解决你的问题,请参考以下文章

数据结构--AVL树

[数据结构]二叉搜索树(BST) VS 平衡二叉排序树(AVL) VS B树(平衡多路搜索树) VS B+树 VS 红黑树(平衡二叉B树)

AVL树详解

AVL树详解

AVL树

AVL树