BSP开发学习3内核并发处理
Posted 与光同程
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了BSP开发学习3内核并发处理相关的知识,希望对你有一定的参考价值。
Linux 并发
Linux并发概述
可能引起Linux 内存混乱的原因
- 多线程
- 抢占
- 中断
- SMP多核
原子操作
Linux内核原子操作需要引用 include/linux/types.h
typedef struct
int counter;
atomic_t;
atomic_t a; //定义 a
atomic_t b = ATOMIC_INIT(0); //定义原子变量 b 并赋初值为 0
函数 | 描述 |
---|---|
ATOMIC_INIT(int i) | 定义原子变量的时候对其初始化。 |
int atomic_read(atomic_t *v) | 读取 v 的值,并且返回。 |
void atomic_set(atomic_t *v, int i) | 向 v 写入 i 值。 |
void atomic_add(int i, atomic_t *v) | 给 v 加上 i 值。 |
void atomic_sub(int i, atomic_t *v) | 从 v 减去 i 值。 |
void atomic_inc(atomic_t *v) | 给 v 加 1,也就是自增。 |
void atomic_dec(atomic_t *v) | 从 v 减 1,也就是自减 |
int atomic_dec_return(atomic_t *v) | 从 v 减 1,并且返回 v 的值。 |
int atomic_inc_return(atomic_t *v) | 给 v 加 1,并且返回 v 的值。 |
int atomic_sub_and_test(int i, atomic_t *v) | 从 v 减 i,如果结果为 0 就返回真,否则返回假 |
int atomic_dec_and_test(atomic_t *v) | 从 v 减 1,如果结果为 0 就返回真,否则返回假 |
int atomic_inc_and_test(atomic_t *v) | 给 v 加 1,如果结果为 0 就返回真,否则返回假 |
int atomic_add_negative(int i, atomic_t *v) | 给 v 加 i,如果结果为负就返回真,否则返回假 |
void set_bit(int nr, void *p) | 将 p 地址的第 nr 位置 1。 |
void clear_bit(int nr,void *p) | 将 p 地址的第 nr 位清零。 |
void change_bit(int nr, void *p) | 将 p 地址的第 nr 位进行翻转。 |
int test_bit(int nr, void *p) | 获取 p 地址的第 nr 位的值。 |
int test_and_set_bit(int nr, void *p) | 将 p 地址的第 nr 位置 1,并且返回 nr 位原来的值。 |
int test_and_clear_bit(int nr, void *p) | 将 p 地址的第 nr 位清零,并且返回 nr 位原来的值。 |
int test_and_change_bit(int nr, void *p) | 将 p 地址的第 nr 位翻转,并且返回 nr 位原来的值。 |
自旋锁
把自旋锁比作一个变量 a,变量 a=1 的时候表示共享资源可用,当 a=0
的时候表示共享资源不可用。现在线程 A 要访问共享资源,发现 a=0(自旋锁被其他线程持有),
那么线程 A 就会不断的查询 a 的值,直到 a=1。从这里我们可以看到自旋锁的一个缺点:那就
等待自旋锁的线程会一直处于自旋状态,这样会浪费处理器时间,降低系统性能,所以自旋锁
的持有时间不能太长。所以自旋锁适用于短时期的轻量级加锁
64 typedef struct spinlock
65 union
66 struct raw_spinlock rlock;
67
68 #ifdef CONFIG_DEBUG_LOCK_ALLOC
69 # define LOCK_PADSIZE (offsetof(struct raw_spinlock, dep_map))
70 struct
71 u8 __padding[LOCK_PADSIZE];
72 struct lockdep_map dep_map;
73 ;
74 #endif
75 ;
76 spinlock_t;
spinlock_t lock; //定义自旋锁
函数 | 描述 |
---|---|
DEFINE_SPINLOCK(spinlock_t lock) | 定义并初始化一个自选变量。 |
int spin_lock_init(spinlock_t *lock) | 初始化自旋锁。 |
void spin_lock(spinlock_t *lock) | 获取指定的自旋锁,也叫做加锁。 |
void spin_unlock(spinlock_t *lock) | 释放指定的自旋锁。 |
int spin_trylock(spinlock_t *lock) | 尝试获取指定的自旋锁,如果没有获取到就返回 0 |
int spin_is_locked(spinlock_t *lock) | 检查指定的自旋锁是否被获取,如果没有被获取就返回非 0,否则返回 0。 |
函数 | 描述 |
---|---|
void spin_lock_irq(spinlock_t *lock) | 禁止本地中断,并获取自旋锁。 |
void spin_unlock_irq(spinlock_t *lock) | 激活本地中断,并释放自旋锁。 |
void spin_lock_irqsave(spinlock_t *lock,unsigned long flags) | 保存中断状态,禁止本地中断,并获取自旋锁。 |
void spin_unlock_irqrestore(spinlock_t*lock, unsigned long flags) | 将中断状态恢复到以前的状态,并且激活本地中断,释放自旋锁。 |
函数 | 描述 |
---|---|
void spin_lock_bh(spinlock_t *lock) | 关闭下半部,并获取自旋锁。 |
void spin_unlock_bh(spinlock_t *lock) | 打开下半部,并释放自旋锁。 |
1 DEFINE_SPINLOCK(lock) /* 定义并初始化一个锁 */
2
3 /* 线程 A */
4 void functionA ()
5 unsigned long flags; /* 中断状态 */
6 spin_lock_irqsave(&lock, flags) /* 获取锁 */
7 /* 临界区 */
8 spin_unlock_irqrestore(&lock, flags) /* 释放锁 */
9
10
11 /* 中断服务函数 */
12 void irq()
13 spin_lock(&lock) /* 获取锁 */
14 /* 临界区 */
15 spin_unlock(&lock) /* 释放锁 */
16
①、因为在等待自旋锁的时候处于“自旋”状态,因此锁的持有时间不能太长,一定要
短,否则的话会降低系统性能。如果临界区比较大,运行时间比较长的话要选择其他的并发处
理方式,比如信号量和互斥体。
②、自旋锁保护的临界区内不能调用任何可能导致线程休眠的 API 函数,否则的话可能
导致死锁。
③、不能递归申请自旋锁,因为一旦通过递归的方式申请一个你正在持有的锁,那么你就
必须“自旋”,等待锁被释放,然而你正处于“自旋”状态,根本没法释放锁。结果就是自己
把自己锁死了!
④、在编写驱动程序的时候我们必须考虑到驱动的可移植性,因此不管你用的是单核的还
是多核的 SOC,都将其当做多核 SOC 来编写驱动程序。
信号量
信号量的特点:
①、因为信号量可以使等待资源线程进入休眠状态,因此适用于那些占用资源比较久的场合。
②、因此信号量不能用于中断中,因为信号量会引起休眠,中断不能休眠。
③、如果共享资源的持有时间比较短,那就不适合使用信号量了,因为频繁的休眠、切换
线程引起的开销要远大于信号量带来的那点优势
struct semaphore
raw_spinlock_t lock;
unsigned int count;
struct list_head wait_list;
;
函数 | 描述 |
---|---|
DEFINE_SEAMPHORE(name) | 定义一个信号量,并且设置信号量的值为 1。 |
void sema_init(struct semaphore *sem, int val) | 初始化信号量 sem,设置信号量值为 val。 |
void down(struct semaphore *sem) | 获取信号量,因为会导致休眠,因此不能在中断中使用。 |
int down_trylock(struct semaphore *sem); | 尝试获取信号量,如果能获取到信号量就获取,并且返回 0。如果不能就返回非 0,并且不会进入休眠。 |
int down_interruptible(struct semaphore *sem) | 获取信号量,和 down 类似,只是使用 down 进入休眠状态的线程不能被信号打断。而使用此函数进入休眠以后是可以被信号打断的。 |
void up(struct semaphore *sem) | 释放信号量 |
struct semaphore sem; /* 定义信号量 */
sema_init(&sem, 1); /* 初始化信号量 */
down(&sem); /* 申请信号量 */
/* 临界区 */
up(&sem); /* 释放信号量 */
互斥体
struct mutex
/* 1: unlocked, 0: locked, negative: locked, possible waiters */
atomic_t count;
spinlock_t wait_lock;
;
在使用 mutex 之前要先定义一个 mutex 变量。在使用 mutex 的时候要注意如下几点:
①、mutex 可以导致休眠,因此不能在中断中使用 mutex,中断中只能使用自旋锁。
②、和信号量一样,mutex 保护的临界区可以调用引起阻塞的 API 函数。
③、因为一次只有一个线程可以持有 mutex,因此,必须由 mutex 的持有者释放 mutex。并
且 mutex 不能递归上锁和解锁。
函数 | 描述 |
---|---|
DEFINE_MUTEX(name) | 定义并初始化一个 mutex 变量。 |
void mutex_init(mutex *lock) | 初始化 mutex。 |
void mutex_lock(struct mutex *lock) | 获取 mutex,也就是给 mutex 上锁。如果获取不到就进休眠。 |
void mutex_unlock(struct mutex *lock) | 释放 mutex,也就给 mutex 解锁。 |
int mutex_trylock(struct mutex *lock) | 尝试获取 mutex,如果成功就返回 1,如果失败就返回 0。 |
int mutex_is_locked(struct mutex *lock) | 判断 mutex 是否被获取,如果是的话就返回1,否则返回 0。 |
int mutex_lock_interruptible(struct mutex *lock) | 使用此函数获取信号量失败进入休眠以后可以被信号打断。 |
1 struct mutex lock; /* 定义一个互斥体 */
2 mutex_init(&lock); /* 初始化互斥体 */
3
4 mutex_lock(&lock); /* 上锁 */
5 /* 临界区 */
6 mutex_unlock(&lock); /* 解锁 */
以上是关于BSP开发学习3内核并发处理的主要内容,如果未能解决你的问题,请参考以下文章