高性能几何多重网格与 GPU 加速

Posted ShaderJoy

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了高性能几何多重网格与 GPU 加速相关的知识,希望对你有一定的参考价值。

英文原文

线性求解器可能是科学计算应用中最常见的工具。求解  方程有两种基本方法:直接法和迭代法。直接方法通常是健壮的,但是需要额外的计算复杂度和内存容量。与直接求解器不同,迭代求解器需要最小的内存开销,并且具有更好的计算复杂性。然而,这些求解器在变量数量上仍然是超线性的,并且通常具有较慢的低频误差收敛速度。最后,提出了一种多网格迭代方法,通过求解不同分辨率的问题,并使用较粗的网格平滑低频误差,从而获得线性复杂度。

从广义上讲,多网格方法可以分为更一般的代数多网格(AMG)和专门的几何多网格(GMG)。AMG 是解决非结构化网格问题的完美“黑箱”求解器,其中元素或 volumes 可以有不同数量的邻域,并且很难识别子问题。有一篇有趣的博客文章展示了GPU加速器使用 NVIDIA AmgX 库在 AMG 中显示出良好的性能。对于结构化问题,GMG 方法比 AMG 方法更有效,因为它们可以利用问题几何表示的附加信息。GMG 求解器 对内存的需求显著降低,提供更高的

以上是关于高性能几何多重网格与 GPU 加速的主要内容,如果未能解决你的问题,请参考以下文章

华为云发布GPU共享型AI容器及Istio服务网格;华为发布下一代智能电网融合传送解决方案;华为与IEEE P1901.1标准工

在具有 GPU 加速的 arrayfun 中使用匿名函数 (Matlab)

将 glDrawElements 性能与预期 GPU 性能进行比较?

通过浪潮AIStation实现细粒度高性能的GPU资源共享

线性方程组的求解方法的选择和加速

线性方程组的求解方法的选择和加速