hadoop面试100道收集(带答案)

Posted kingmax54212008

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了hadoop面试100道收集(带答案)相关的知识,希望对你有一定的参考价值。

1.列出安装hadoop流程步骤

a) 创建hadoop账号

b) 更改ip

c) 安装java 更改/etc/profile 配置环境变量

d) 修改host文件域名

e) 安装ssh 配置无密码登录

f) 解压hadoop

g) 配置hadoop  conf下面的配置文件

h) Hadoop namenode -format  格式化

i) Start 启动

2.列出hadoop集群启动中的所有进程和进程的作用

a) Namenode 管理集群  记录namenode文件信息

b) Secondname 可以做备份  对一定范围内的数据做快照

c) Datanode  存储数据

d) Jobtarcker 管理任务  分配任务

e) Tasktracker   执行任务

3.启动报nameNode错误 如何解决

a) 检查hdfs有没有启动成功

b) 检查输入文件是不是存在

4.写出下列执行命令 

杀死一个job

Hadoop job -list  取得job id

Hadoop job kill job id

删除hdfs上的 /temp/aa 目录

Hadoop -daemon。Sh start datanode 

加入一个新的节点或删除一个节点  刷新集群状态的命令

5.列出你所知道的调肚脐  说明其工作方法

a) Fifo schedular 默认的调肚脐  先进先出

b) Capacity schedular  计算能力调肚脐  选择占用内存小  优先级高的

c) Fair schedular 调肚脐  公平调肚脐  所有job 占用相同资源

6.列出开发map/reduce 元数据存储

a) 

7.用你最熟悉的语言辨析一个map reduce 计算第四个原色的个数

a) Wordcount  

8.你认为java streating pipe 开发map reduce 优缺点

a) Java 编写map reduce可以实现复杂的逻辑  如果需求简单  则显得繁琐

b) Hivesql 基本都是针对hive中表数据进行编写  对复杂的逻辑很难实现

9.Hive 有哪些保存元数据的方式  并有哪些特点

a) 内存数据库  derby

b) 本地MySQL 常用

c) 远程mysql 

10.简述hadoop怎么样实现二级缓存

11.简述hadoop实现join的及各种方式

reduce side join是一种最简单的join方式,其主要思想如下:

在map阶段,map函数同时读取两个文件File1和File2,为了区分两种来源的key/value数据对,对每条数据打一个标签(tag),比如:tag=0表示来自文件File1,tag=2表示来自文件File2。即:map阶段的主要任务是对不同文件中的数据打标签。

在reduce阶段,reduce函数获取key相同的来自File1和File2文件的value list, 然后对于同一个key,对File1和File2中的数据进行join(笛卡尔乘积)。即:reduce阶段进行实际的连接操作。

2.2 map side join

之所以存在reduce side join,是因为在map阶段不能获取所有需要的join字段,即:同一个key对应的字段可能位于不同map中。Reduce side join是非常低效的,因为shuffle阶段要进行大量的数据传输。

Map side join是针对以下场景进行的优化:两个待连接表中,有一个表非常大,而另一个表非常小,以至于小表可以直接存放到内存中。这样,我们可以将小表复制多份,让每个map task内存中存在一份(比如存放到hash table中),然后只扫描大表:对于大表中的每一条记录key/value,在hash table中查找是否有相同的key的记录,如果有,则连接后输出即可。

为了支持文件的复制,Hadoop提供了一个类DistributedCache,使用该类的方法如下:

(1)用户使用静态方法DistributedCache.addCacheFile()指定要复制的文件,它的参数是文件的URI(如果是HDFS上的文件,可以这样:hdfs://namenode:9000/home/XXX/file,其中9000是自己配置的NameNode端口号)。JobTracker在作业启动之前会获取这个URI列表,并将相应的文件拷贝到各个TaskTracker的本地磁盘上。(2)用户使用DistributedCache.getLocalCacheFiles()方法获取文件目录,并使用标准的文件读写API读取相应的文件。

2.3 SemiJoin

SemiJoin,也叫半连接,是从分布式数据库中借鉴过来的方法。它的产生动机是:对于reduce side join,跨机器的数据传输量非常大,这成了join操作的一个瓶颈,如果能够在map端过滤掉不会参加join操作的数据,则可以大大节省网络IO。

实现方法很简单:选取一个小表,假设是File1,将其参与join的key抽取出来,保存到文件File3中,File3文件一般很小,可以放到内存中。在map阶段,使用DistributedCache将File3复制到各个TaskTracker上,然后将File2中不在File3中的key对应的记录过滤掉,剩下的reduce阶段的工作与reduce side join相同。

12.

13.Java 非递归 二分查找

1. public class BinarySearchClass  

2.   

3.   

4.     public static int binary_search(int[] array, int value)  

5.       

6.         int beginIndex = 0;// 低位下标  

7.         int endIndex = array.length - 1;// 高位下标  

8.         int midIndex = -1;  

9.         while (beginIndex <= endIndex)   

10.             midIndex = beginIndex + (endIndex - beginIndex) / 2;//防止溢出  

11.             if (value == array[midIndex])   

12.                 return midIndex;  

13.              else if (value < array[midIndex])   

14.                 endIndex = midIndex - 1;  

15.              else   

16.                 beginIndex = midIndex + 1;  

17.               

18.           

19.         return -1;  

20.         //找到了,返回找到的数值的下标,没找到,返回-1         

21.       

22.   

23.   

24.     //start 提示:自动阅卷起始唯一标识,请勿删除或增加。  

25.     public static void main(String[] args)  

26.       

27.         System.out.println("Start...");  

28.         int[] myArray = new int[]  1, 2, 3, 5, 6, 7, 8, 9 ;  

29.         System.out.println("查找数字8的下标:");  

30.         System.out.println(binary_search(myArray, 8));          

31.       

14.

15.Combiner 和partition的作用

16.combine分为map端和reduce端,作用是把同一个key的键值对合并在一起,可以自定义的。
combine函数把一个map函数产生的<key,value>对(多个key,value)合并成一个新的<key2,value2>.将新的<key2,value2>作为输入到reduce函数中
这个value2亦可称之为values,因为有多个。这个合并的目的是为了减少网络传输。

partition是分割map每个节点的结果,按照key分别映射给不同的reduce,也是可以自定义的。这里其实可以理解归类。
我们对于错综复杂的数据归类。比如在动物园里有牛羊鸡鸭鹅,他们都是混在一起的,但是到了晚上他们就各自牛回牛棚,羊回羊圈,鸡回鸡窝。partition的作用就是把这些数据归类。只不过在写程序的时候,mapreduce使用哈希HashPartitioner帮我们归类了。这个我们也可以自定义。

shuffle就是map和reduce之间的过程,包含了两端的combine和partition。


Map的结果,会通过partition分发到Reducer上,Reducer做完Reduce操作后,通过OutputFormat,进行输出
shuffle阶段的主要函数是fetchOutputs(),这个函数的功能就是将map阶段的输出,copy到reduce 节点本地

17.俩个文件用linux命令完成下列工作

a) 俩个文件各自的ip数  和综述

b) 出现在b文件  没有出现在a文件的ip

c) 那个name的次数  和他对一个的ip

 

 

1.hive内部表和外部表区别

2.1、在导入数据到外部表,数据并没有移动到自己的数据仓库目录下,也就是说外部表中的数据并不是由它自己来管理的!而表则不一样;
2、在删除表的时候,Hive将会把属于表的元数据和数据全部删掉;而删除外部表的时候,Hive仅仅删除外部表的元数据,数据是不会删除的!
那么,应该如何选择使用哪种表呢?在大多数情况没有太多的区别,因此选择只是个人喜好的问题。但是作为一个经验,如果所有处理都需要由Hive完成,那么你应该创建表,否则使用外部表!

3.Hbase rowkey怎么创建表交好  列祖怎么创建比较好

HBase是一个分布式的、面向列的数据库,它和一般关系型数据库的最大区别是:HBase很适合于存储非结构化的数据,还有就是它基于列的而不是基于行的模式。

既然HBase是采用KeyValue的列存储,那Rowkey就是KeyValue的Key了,表示唯一一行。Rowkey也是一段二进制码流,最大长度为64KB,内容可以由使用的用户自定义。数据加载时,一般也是根据Rowkey的二进制序由小到大进行的。

HBase是根据Rowkey来进行检索的,系统通过找到某个Rowkey (或者某个 Rowkey 范围)所在的Region,然后将查询数据的请求路由到该Region获取数据。HBase的检索支持3种方式:

(1) 通过单个Rowkey访问,即按照某个Rowkey键值进行get操作,这样获取唯一一条记录;

(2) 通过Rowkey的range进行scan,即通过设置startRowKey和endRowKey,在这个范围内进行扫描。这样可以按指定的条件获取一批记录;

(3) 全表扫描,即直接扫描整张表中所有行记录。

HBASE按单个Rowkey检索的效率是很高的,耗时在1毫秒以下,每秒钟可获取1000~2000条记录,不过非key列的查询很慢。

2 HBase的RowKey设计

2.1 设计原则

2.1.1 Rowkey长度原则

Rowkey是一个二进制码流,Rowkey的长度被很多开发者建议说设计在10~100个字节,不过建议是越短越好,不要超过16个字节。

原因如下:

(1)数据的持久化文件HFile中是按照KeyValue存储的,如果Rowkey过长比如100个字节,1000万列数据光Rowkey就要占用100*1000万=10亿个字节,将近1G数据,这会极大影响HFile的存储效率;

(2)MemStore将缓存部分数据到内存,如果Rowkey字段过长内存的有效利用率会降低,系统将无法缓存更多的数据,这会降低检索效率。因此Rowkey的字节长度越短越好。

(3)目前操作系统是都是64位系统,内存8字节对齐。控制在16个字节,8字节的整数倍利用操作系统的最佳特性。

回到顶部

2.1.2 Rowkey散列原则

如果Rowkey是按时间戳的方式递增,不要将时间放在二进制码的前面,建议将Rowkey的高位作为散列字段,由程序循环生成,低位放时间字段,这样将提高数据均衡分布在每个Regionserver实现负载均衡的几率。如果没有散列字段,首字段直接是时间信息将产生所有新数据都在一个 RegionServer上堆积的热点现象,这样在做数据检索的时候负载将会集中在个别RegionServer,降低查询效率。

回到顶部

2.1.3 Rowkey唯一原则

必须在设计上保证其唯一性。

2.2 应用场景

基于Rowkey的上述3个原则,应对不同应用场景有不同的Rowkey设计建议。

回到顶部

2.2.1 针对事务数据Rowkey设计

事务数据是带时间属性的,建议将时间信息存入到Rowkey中,这有助于提示查询检索速度。对于事务数据建议缺省就按天为数据建表,这样设计的好处是多方面的。按天分表后,时间信息就可以去掉日期部分只保留小时分钟毫秒,这样4个字节即可搞定。加上散列字段2个字节一共6个字节即可组成唯一 Rowkey。如下图所示:

事务数据Rowkey设计

第0字节

第1字节

第2字节

第3字节

第4字节

第5字节

散列字段

时间字段(毫秒)

扩展字段

0~65535(0x0000~0xFFFF)

0~86399999(0x00000000~0x05265BFF)

 

这样的设计从操作系统内存管理层面无法节省开销,因为64位操作系统是必须8字节对齐。但是对于持久化存储中Rowkey部分可以节省25%的开销。也许有人要问为什么不将时间字段以主机字节序保存,这样它也可以作为散列字段了。这是因为时间范围内的数据还是尽量保证连续,相同时间范围内的数据查找的概率很大,对查询检索有好的效果,因此使用独立的散列字段效果更好,对于某些应用,我们可以考虑利用散列字段全部或者部分来存储某些数据的字段信息,只要保证相同散列值在同一时间(毫秒)唯一。

回到顶部

2.2.2 针对统计数据的Rowkey设计

统计数据也是带时间属性的,统计数据最小单位只会到分钟(到秒预统计就没意义了)。同时对于统计数据我们也缺省采用按天数据分表,这样设计的好处无需多说。按天分表后,时间信息只需要保留小时分钟,那么0~1400只需占用两个字节即可保存时间信息。由于统计数据某些维度数量非常庞大,因此需要4个字节作为序列字段,因此将散列字段同时作为序列字段使用也是6个字节组成唯一Rowkey。如下图所示:

统计数据Rowkey设计

第0字节

第1字节

第2字节

第3字节

第4字节

第5字节

散列字段(序列字段)

时间字段(分钟)

扩展字段

0x00000000~0xFFFFFFFF)

0~1439(0x0000~0x059F)

 

同样这样的设计从操作系统内存管理层面无法节省开销,因为64位操作系统是必须8字节对齐。但是对于持久化存储中Rowkey部分可以节省25%的开销。预统计数据可能涉及到多次反复的重计算要求,需确保作废的数据能有效删除,同时不能影响散列的均衡效果,因此要特殊处理。

回到顶部

2.2.3 针对通用数据的Rowkey设计

通用数据采用自增序列作为唯一主键,用户可以选择按天建分表也可以选择单表模式。这种模式需要确保同时多个入库加载模块运行时散列字段(序列字段)的唯一性。可以考虑给不同的加载模块赋予唯一因子区别。设计结构如下图所示。

通用数据Rowkey设计

第0字节

第1字节

第2字节

第3字节

散列字段(序列字段)

扩展字段(控制在12字节内)

0x00000000~0xFFFFFFFF)

可由多个用户字段组成

回到顶部

2.2.4 支持多条件查询的RowKey设计

HBase按指定的条件获取一批记录时,使用的就是scan方法。 scan方法有以下特点:

(1)scan可以通过setCaching与setBatch方法提高速度(以空间换时间);

(2)scan可以通过setStartRow与setEndRow来限定范围。范围越小,性能越高。

通过巧妙的RowKey设计使我们批量获取记录集合中的元素挨在一起(应该在同一个Region下),可以在遍历结果时获得很好的性能。

(3)scan可以通过setFilter方法添加过滤器,这也是分页、多条件查询的基础。

在满足长度、三列、唯一原则后,我们需要考虑如何通过巧妙设计RowKey以利用scan方法的范围功能,使得获取一批记录的查询速度能提高。下例就描述如何将多个列组合成一个RowKey,使用scan的range来达到较快查询速度。

例子:

我们在表中存储的是文件信息,每个文件有5个属性:文件id(long,全局唯一)、创建时间(long)、文件名(String)、分类名(String)、所有者(User)。

我们可以输入的查询条件:文件创建时间区间(比如从20120901到20120914期间创建的文件),文件名(“中国好声音”),分类(“综艺”),所有者(“浙江卫视”)。

假设当前我们一共有如下文件:

ID

CreateTime

Name

Category

UserID

1

20120902

中国好声音第1期

综艺

1

2

20120904

中国好声音第2期

综艺

1

3

20120906

中国好声音外卡赛

综艺

1

4

20120908

中国好声音第3期

综艺

1

5

20120910

中国好声音第4期

综艺

1

6

20120912

中国好声音选手采访

综艺花絮

2

7

20120914

中国好声音第5期

综艺

1

8

20120916

中国好声音录制花絮

综艺花絮

2

9

20120918

张玮独家专访

花絮

3

10

20120920

加多宝凉茶广告

综艺广告

4

这里UserID应该对应另一张User表,暂不列出。我们只需知道UserID的含义:

1代表 浙江卫视; 2代表 好声音剧组; 3代表 XX微博; 4代表赞助商。调用查询接口的时候将上述5个条件同时输入find(20120901,20121001,”中国好声音”,”综艺”,”浙江卫视”)。此时我们应该得到记录应该有第1、2、3、4、5、7条。第6条由于不属于“浙江卫视”应该不被选中。我们在设计RowKey时可以这样做:采用 UserID + CreateTime + FileID组成RowKey,这样既能满足多条件查询,又能有很快的查询速度。

需要注意以下几点:

(1)每条记录的RowKey,每个字段都需要填充到相同长度。假如预期我们最多有10万量级的用户,则userID应该统一填充至6位,如000001,000002…

(2)结尾添加全局唯一的FileID的用意也是使每个文件对应的记录全局唯一。避免当UserID与CreateTime相同时的两个不同文件记录相互覆盖。

按照这种RowKey存储上述文件记录,在HBase表中是下面的结构:

rowKey(userID 6 + time 8 + fileID 6) name category ….

00000120120902000001

00000120120904000002

00000120120906000003

00000120120908000004

00000120120910000005

00000120120914000007

00000220120912000006

00000220120916000008

00000320120918000009

00000420120920000010

怎样用这张表?

在建立一个scan对象后,我们setStartRow(00000120120901),setEndRow(00000120120914)。

这样,scan时只扫描userID=1的数据,且时间范围限定在这个指定的时间段内,满足了按用户以及按时间范围对结果的筛选。并且由于记录集中存储,性能很好。

然后使用 SingleColumnValueFilter(org.apache.hadoop.hbase.filter.SingleColumnValueFilter),共4个,分别约束name的上下限,与category的上下限。满足按同时按文件名以及分类名的前缀匹配。

4.

5.Mapreduce怎么处理数据倾斜

6.map /reduce程序执行时,reduce节点大部分执行完毕,但是有一个或者几个reduce节点运行很慢,导致整个程序的处理时间很长,这是因为某一个key的条数比其他key多很多(有时是百倍或者千倍之多),这条key所在的reduce节点所处理的数据量比其他节点就大很多,从而导致某几个节点迟迟运行不完,此称之为数据倾斜。

用hadoop程序进行数据关联时,常碰到数据倾斜的情况,这里提供一种解决方法。

(1)设置一个hash份数N,用来对条数众多的key进行打散。

(2)对有多条重复key的那份数据进行处理:从1到N将数字加在key后面作为新key,如果需要和另一份数据关联的话,则要重写比较类和分发类(方法如上篇《hadoop job解决大数据量关联的一种方法》)。如此实现多条key的平均分发。

int iNum = iNum % iHashNum;

String strKey = key + CTRLC + String.valueOf(iNum) + CTRLB + “B”;


(3)上一步之后,key被平均分散到很多不同的reduce节点。如果需要和其他数据关联,为了保证每个reduce节点上都有关联的key,对另一份单一key的数据进行处理:循环的从1到N将数字加在key后面作为新key

for(int i = 0; i < iHashNum; ++i)

String strKey =key + CTRLC + String.valueOf(i) ;

output.collect(new Text(strKey), new Text(strValues));

以此解决数据倾斜的问题,经试验大大减少了程序的运行时间。但此方法会成倍的增加其中一份数据的数据量,以增加shuffle数据量为代价,所以使用此方法时,要多次试验,取一个最佳的hash份数值。

======================================

用上述的方法虽然可以解决数据倾斜,但是当关联的数据量巨大时,如果成倍的增长某份数据,会导致reduce shuffle的数据量变的巨大,得不偿失,从而无法解决运行时间慢的问题。

有一个新的办法可以解决 成倍增长数据 的缺陷:

在两份数据中找共同点,比如两份数据里除了关联的字段以外,还有另外相同含义的字段,如果这个字段在所有log中的重复率比较小,则可以用这个字段作为计算hash的值,如果是数字,可以用来模hash的份数,如果是字符可以用hashcode来模hash的份数(当然数字为了避免落到同一个reduce上的数据过多,也可以用hashcode),这样如果这个字段的值分布足够平均的话,就可以解决上述的问题。-

7.Hadoop框架中怎么优化

Storm用于处理高速、大型数据流的分布式实时计算系统。为Hadoop添加了可靠的实时数据处理功能
Spark采用了内存计算。从多迭代批处理出发,允许将数据载入内存作反复查询,此外还融合数据仓库,流处理和图形计算等多种计算范式。Spark构建在HDFS上,能与Hadoop很好的结合。它的RDD是一个很大的特点。
Hadoop当前大数据管理标准之一,运用在当前很多商业应用系统。可以轻松地集成结构化、半结构化甚至非结构化数据集。

8.

9.Hbase内部是什么机制

在HBase 中无论是增加新行还是修改已有的行,其内部流程都是相同的。HBase 接到命令后存下变化信息,或者写入失败抛出异常。默认情况下,执行写入时会写到两个地方:预写式日志(write-ahead log,也称HLog)和MemStore(见图2-1)。HBase 的默认方式是把写入动作记录在这两个地方,以保证数据持久化。只有当这两个地方的变化信息都写入并确认后,才认为写动作完成。

MemStore 是内存里的写入缓冲区,HBase 中数据在永久写入硬盘之前在这里累积。当MemStore 填满后,其中的数据会刷写到硬盘,生成一个HFile。HFile 是HBase 使用的底层存储格式。HFile 对应于列族,一个列族可以有多个HFile,但一个HFile 不能存储多个列族的数据。在集群的每个节点上,每个列族有一个MemStore。

大型分布式系统中硬件故障很常见,HBase 也不例外。设想一下,如果MemStore还没有刷写,服务器就崩溃了,内存中没有写入硬盘的数据就会丢失。HBase 的应对办法是在写动作完成之前先写入WAL。HBase 集群中每台服务器维护一个WAL 来记录发生的变化。WAL 是底层文件系统上的一个文件。直到WAL 新记录成功写入后,写动作才被认为成功完成。这可以保证HBase 和支撑它的文件系统满足持久性。大多数情况下,HBase 使用Hadoop 分布式文件系统(HDFS)来作为底层文件系统。

如果HBase 服务器宕机,没有从MemStore 里刷写到HFile 的数据将可以通过回放WAL 来恢复。你不需要手工执行。Hbase 的内部机制中有恢复流程部分来处理。每台HBase 服务器有一个WAL,这台服务器上的所有表(和它们的列族)共享这个WAL。

你可能想到,写入时跳过WAL 应该会提升写性能。但我们不建议禁用WAL,除非你愿意在出问题时丢失数据。如果你想测试一下,如下代码可以禁用WAL:

 


注意:不写入WAL 会在RegionServer 故障时增加丢失数据的风险。关闭WAL,出现故障时HBase 可能无法恢复数据,没有刷写到硬盘的所有写入数据都会丢失。

10.

11.我们在开发分布式计算jiob的是不是可以去掉reduce

由于MapReduce计算输入和输出都是基于HDFS文件,所以大多数公司的做法是把mysql或sqlserver的数据导入到HDFS,计算完后再导出到常规的数据库中,这是MapReduce不够灵活的地方之一。 MapReduce优势在于提供了比较简单的分布式计算编程模型,使开发此类程序变得非常简单,像之前的MPI编程就相当复杂。

狭隘的来讲,MapReduce是把计算任务给规范化了,它可以等同于小和尚中Worker的业务逻辑部分。 MapReduce把业务逻辑给拆分成2个大部分,Map和Reduce,可以先在Map部分把任务计算一半后,扔给Reduce部分继续后面的计算。 当然在Map部分把计算任务全做完也是可以的。 关于Mapreduce实现细节部分不多解释,有兴趣的同学可以查相关资料或看下楼主之前的C#模拟实现的博客【探索C#之微型MapReduce

如果把小明产品经理的需求放到Hadoop来做,其处理流程大致如下:

1. 把100G数据导入到HDFS

2. 按照Mapreduce的接口编写处理逻辑,分Map、Reduce两部分。

3. 把程序包提交到Mapreduce平台上,存储在HDFS里。

4. 平台中有个叫Jobtracker进程的角色进行分发任务。 这个类似小和尚的Master负载调度管理。

5. 如果有5台机器进行计算的话,就会提前运行5个叫TaskTracker的slave进程。 这类似小和尚worker的分离版,平台把程序和业务逻辑进行分离了, 简单来说就是在机器上运行个独立进程,它能动态加载、执行jar或dll的业务逻辑代码。

6. Jobtracker把任务分发到TaskTracker后,TaskTracker把开始动态加载jar包,创建个独立进程执行Map部分,然后把结果写入到HDFS上。

7. 如果有Reduce部分,TaskTracker会创建个独立进程把Map输出的HDFS文件,通过RPC方式远程拉取到本地,拉取成功后,Reduce开始计算后续任务。

8. Reduce再把结果写入到HDFS中

9. 从HDFS中把结果导出。

这样一看好像是把简单的计算任务给

12.

13.Hdfs数据压缩算法

14.1、在HDFS之上将数据压缩好后,再存储到HDFS
2、在HDFS内部支持数据压缩,这里又可以分为几种方法:
    2.1、压缩工作在DataNode上完成,这里又分两种方法:
           2.1.1、数据接收完后,再压缩
                     这个方法对HDFS的改动最小,但效果最低,只需要在block文件close后,调用压缩工具,将block文件压缩一下,然后再打开block文件时解压一下即可,几行代码就可以搞定
           2.1.2、边接收数据边压缩,使用第三方提供的压缩库
                     效率和复杂度折中方法,Hook住系统的write和read操作,在数据写入磁盘之前,先压缩一下,但write和read对外的接口行为不变,比如:原始大小为100KB的数据,压缩后大小为10KB,当写入100KB后,仍对调用者返回100KB,而不是10KB
    2.2、压缩工作交给DFSClient做,DataNode只接收和存储
           这个方法效果最高,压缩分散地推给了HDFS客户端,但DataNode需要知道什么时候一个block块接收完成了。
推荐最终实现采用2.2这个方法,该方法需要修改的HDFS代码量也不大,但效果最高。

15.Mapreduce调度模式

MapReduce是hadoop提供一个可进行分布式计算的框架或者平台,显然这个平台是多用户的,每个合法的用户可以向这个平台提交作业,那么这就带来一个问题,就是作业调度。

      任何调度策略都考虑自己平台调度需要权衡的几个维度,例如操作系统中的进程调度,他需要考虑的维度就是资源(CPU)的最大利用率(吞吐)和实时性,操作系统对实时性的要求很高,所以操作系统往往采用基于优先级的、可抢占式的调度策略,并且赋予IO密集型(相对于计算密集型)的进程较高的优先级,扯的有点远。

      回到hadoop平台,其实MapReduce的作业调度并没有很高的实时性的要求,本着最大吞吐的原则去设计的,所以MapReduce默认采用的调度策略是FIFO(基于优先级队列实现的FIFO,不是纯粹的FIFO,这样每次h),这种策略显然不是可抢占式的调度,所以带来的问题就是高优先级的任务会被先前已经在运行并且还要运行很久的低优先级的作业给堵塞住。

16.

17.Hive底层和数据库交互原理

Hive和Hbase有各自不同的特征:hive是高延迟、结构化和面向分析的,hbase是低延迟、非结构化和面向编程的。Hive数据仓库在hadoop上是高延迟的。Hive集成Hbase就是为了使用hbase的一些特性。如下是hive和hbase的集成架构:

 

图1 hive和hbase架构图

        Hive集成HBase可以有效利用HBase数据库的存储特性,如行更新和列索引等。在集成的过程中注意维持HBase jar包的一致性。Hive集成HBase需要在Hive表和HBase表之间建立映射关系,也就是Hive表的列(columns)和列类型(column types)与HBase表的列族(column families)及列限定词(column qualifiers)建立关联。每一个在Hive表中的域都存在于HBase中,而在Hive表中不需要包含所有HBase中的列。HBase中的RowKey对应到Hive中为选择一个域使用:key来对应,列族(cf:)映射到Hive中的其它所有域,列为(cf:cq)。例如下图2为Hive表映射到HBase表:

 

图2 Hive表映射HBase表

18.

19.Hbase过滤器实现原则

到现在为止你了解到HBase拥有灵活的逻辑模式和简单的物理模型,它们允许应用系统的计算工作更接近硬盘和网络,并

在这个层次进行优化。设计有效的模式是使用HBase的一个方面,你已经掌握了一堆概念用来做到这点。你可以设计行键

以使访问的数据在硬盘上也存放在一起,所以读写操作时可以节省硬盘寻道时间。在读取数据时,你经常需要基于某种标

准进行操作,你可以进一步优化数据访问。过滤器就是在这种情况下使用的一种强大的功能。
我们还没有谈到使用过滤器的真实使用场景;一般来说调整表设计就可以优化访问模式。但是有时你已经把表设计调整得

尽可能好了,为不同访问模式优化得尽可能好了。当你仍然需要减少返回客户端的数据时,这就是考虑使用过滤器的时候

了。有时侯过滤器也被称为下推判断器(push-down predicates),支持你把数据过滤标准从客户端下推到服务器(如图

4.16)。这些过滤逻辑在读操作时使用,对返回客户端的数据有影响。这样通过减少网络传输的数据来节省网络IO。但是

数据仍然需要从硬盘读进RegionServer,过滤器在RegionServer里发挥作用。因为你有可能在HBase表里存储大量数据,

网络IO的节省是有重要意义的,并且先读出全部数据送到客户端再过滤出有用的数据,这种做法开销很大。
图 4.16 在客户端完成数据过滤:从RegionServer把数据读取到客户端,在客户端使用过滤器逻辑处理数据;或者在服务

器端完成数据过滤:把过滤逻辑下推到RegionServer,因此减少了在网络上传输到客户端的数据量。实质上过滤器节省了

网络IO的开销,有时甚至是硬盘IO的开销。
HBase提供了一个API,你可以用来实现定制过滤器。多个过滤器也可以捆绑在一起使用。可以在读过程最开始的地方,基

于行健进行过滤处理。此后,也可以基于HFile读出的KeyValues进行过滤处理。过滤器必须实现HBase Jar包中的Filter

接口,或者继承扩展一个实现了该接口的抽象类。我们推荐继承扩展FilterBase抽象类,这样你不需要写样板代码。继承

扩展其他诸如CompareFilter类也是一个选择,同样可以正常工作。当读取一行时该接口有下面的方法在多个地方可以调

用(顺序如图4.17)。它们总是按照下面描述的顺序来执行:
1 这个方法第一个被调用,基于行健执行过滤:
boolean filterRowKey(byte[] buffer, int offset, int length)
基于这里的逻辑,如果行被过滤掉了(不出现在发送结果集合里)返回true,否则如果发送给客户端则返回false。
2 如果该行没有在上一步被过滤掉,接着调用这个方法处理当前行的每个KeyValue对象:
ReturnCode filterKeyValue(KeyValue v)
这个方法返回一个ReturnCode,这是在Filter接口中定义的一个枚举(enum)类型。返回的ReturnCode判断某个KeyValue

对象发生了什么。
3 在第2步过滤KeyValues对象后,接着是这个方法:
void filterRow(List kvs)
这个方法被传入成功通过过滤的KeyValue对象列表。倘若这个方法访问到这个列表,此时你可以在列表里的元素上执行任

何转换或运算。
4 如果你选择过滤掉某些行,此时这个方法再一次提供了这么做的机会:
boolean filterRow()
过滤掉考虑中的行,则返回true。
5 你可以在过滤器里构建逻辑来提早停止一次扫描。你可以把该逻辑放进这个方法:
boolean filterAllRemaining()
当你扫描很多行,在行健、列标识符或单元值里查找指定东西时,一旦找到目标,你就不再关心剩下的行了。此时这个方

法用起来很方便。这是过滤流程中最后调用的方法。
图 4.17 过滤流程的各个步骤。扫描器对象扫描范围里的每行都会执行这个流程。
 
另一个有用的方法是reset()。它会重置过滤器,在被应用到整行后由服务器调用。
 
注意 这个API很强大,但是我们不觉得它是在应用系统里大量使用的。许多情况下,如果模式设计改变了,使用过滤器的

20.

21.Reduce后输出的量有多大

22.找到离存数据最近的一台机器运行和这个数据相关的map任务,reduce是按照你整理出的key有多少个来决定的。一个机器很难说,处理的快的处理多一点,保持所有机器使用平衡。

上面你都自己写了20个map,和文件大小个数有关,和数据条数无关。

要看你选择的输入格式是什么,默认是行偏移量,然后由你编写map函数,指定key和value是什么。相同的key整合起来传给reduce,由reduce进行下一步处理,最后输出到指定的地方。

23.Mapreduce掌握情况 和 hive hsql掌握情况

Hive 是基于Hadoop 构建的一套数据仓库分析系统,它提供了丰富的SQL查询方式来分析存储在Hadoop 分布式文件系统中的数据,可以将结构

化的数据文件映射为一张数据库表,并提供完整的SQL查询功能,可以将SQL语句转换为MapReduce任务进行运行,通过自己的SQL 去查询分析需

要的内容,这套SQL 简称Hive SQL,使不熟悉mapreduce 的用户很方便的利用SQL 语言查询,汇总,分析数据。而mapreduce开发人员可以把

己写的mapper 和reducer 作为插件来支持Hive 做更复杂的数据分析。


     它与关系型数据库的SQL 略有不同,但支持了绝大多数的语句如DDL、DML 以及常见的聚合函数、连接查询、条件查询。HIVE不适合用于联机

online)事务处理,也不提供实时查询功能。它最适合应用在基于大量不可变数据的批处理作业。

    HIVE的特点:可伸缩(在Hadoop的集群上动态的添加设备),可扩展,容错,输入格式的松散耦合。

 

     Hive 的官方文档中对查询语言有了很详细的描述,请参考:http://wiki.apache.org/hadoop/Hive/LanguageManual ,本文的内容大部分翻译自该页面,期间加入了一些在使用过程中需要注意到的事项。

1.  DDL 操作

DDL

•建表

•删除表

•修改表结构

•创建/删除视图

•创建数据库

•显示命令

建表:

CREATE [EXTERNAL] TABLE [IF NOT EXISTS] table_name 
  [(col_name data_type [COMMENT col_comment], ...)] 
  [COMMENT table_comment] 
  [PARTITIONED BY (col_name data_type [COMMENT col_comment], ...)] 
  [CLUSTERED BY (col_name, col_name, ...) 
  [SORTED BY (col_name [ASC|DESC], ...)] INTO num_buckets BUCKETS] 
  [ROW FORMAT row_format] 
  [STORED AS file_format] 
  [LOCATION hdfs_path]

•CREATE TABLE 创建一个指定名字的表。如果相同名字的表已经存在,则抛出异常;用户可以用 IF NOT EXIST 选项来忽略这个异常

•EXTERNAL 关键字可以让用户创建一个外部表,在建表的同时指定一个指向实际数据的路径(LOCATION)

•LIKE 允许用户复制现有的表结构,但是不复制数据

•COMMENT可以为表与字段增加描述

 

•ROW FORMAT

    DELIMITED [FIELDS TERMINATED BY char] [COLLECTION ITEMS TERMINATED BY char]

        [MAP KEYS TERMINATED BY char] [LINES TERMINATED BY char]

   | SERDE serde_name [WITH SERDEPROPERTIES (property_name=property_value, property_name=property_value, ...)]

         用户在建表的时候可以自定义 SerDe 或者使用自带的 SerDe。如果没有指定 ROW FORMAT 或者 ROW FORMAT DELIMITED,将会使用自带的 SerDe。在建表的时候,用户还需要为表指定列,用户在指定表的列的同时也会指定自定义的 SerDe,Hive 通过 SerDe 确定表的具体的列的数据。

•STORED AS

            SEQUENCEFILE

            | TEXTFILE

            | RCFILE    

            | INPUTFORMAT input_format_classname OUTPUTFORMAT             output_format_classname

       如果文件数据是纯文本,可以使用 STORED AS TEXTFILE。如果数据需要压缩,使用 STORED AS SEQUENCE 。

 

创建简单表:

hive> CREATE TABLE pokes (foo INT, bar STRING); 

 

创建外部表:

CREATE EXTERNAL TABLE page_view(viewTime INT, userid BIGINT,

     page_url STRING, referrer_url STRING,

     ip STRING COMMENT 'IP Address of the User',

     country STRING COMMENT 'country of origination')

 COMMENT 'This is the staging page view table'

 ROW FORMAT DELIMITED FIELDS TERMINATED BY '\\054'

 STORED AS TEXTFILE

 LOCATION '<hdfs_location>';

建分区表

CREATE TABLE par_table(viewTime INT, userid BIGINT,以上是关于hadoop面试100道收集(带答案)的主要内容,如果未能解决你的问题,请参考以下文章

100道Java面试题收集整理及参考答案

100道Java基础面试题收集整理(附答案)

精选Hadoop高频面试题17道,附答案详细解析

收藏 100 道 Linux 面试题 附答案(文末赠书)

100家名企350道Java面试题手册(含答案)

必看!100道Java程序员面试题(含答案)!