深度学习系列50:苹果m1芯片加速pytorch
Posted IE06
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了深度学习系列50:苹果m1芯片加速pytorch相关的知识,希望对你有一定的参考价值。
1. 介绍
Apple的Metal Performance Shaders(MPS)作为PyTorch的后端来加速GPU训练。MPS后端扩展了PyTorch框架,提供了在Mac上设置和运行操作的脚本和功能。MPS通过针对每个Metal GPU系列的独特特性进行微调的内核来优化计算性能。新设备将机器学习计算图和原语映射到MPS提供的MPS Graph框架和优化内核上。
目前pytorch加速版本还是preview状态,安装命令如下:
conda install pytorch torchvision torchaudio -c pytorch-nightly
使用m1 pro 16-core gpu进行测试。
2. pytorch测试1
import torch
img = torch.randn(64, 10, 64, 64)
dev = 'mps:0'
img_dev = img.to(dev)
conv = torch.nn.Conv2d(10,10,3).to(dev)
%timeit conv(img_dev)
dev = 'cpu'
conv = torch.nn.Conv2d(10,10,3).to(dev)
%timeit conv(img)
结果:
439 µs ± 1.15 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)
10.6 ms ± 43.4 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
m1的性能是cpu的20倍左右。
3. pytorch测试2
参考
https://github.com/rasbt/machine-learning-notes/tree/main/benchmark/pytorch-m1-gpu
lenet-mnist:
# cpu
Time / epoch without evaluation: 0.19 min
Epoch: 001/001 | Train: 97.32% | Validation: 97.77% | Best Validation (Ep. 001): 97.77%
Time elapsed: 0.27 min
Total Training Time: 0.27 min
Test accuracy 97.41%
Total Time: 0.29 min
# m1
Time / epoch without evaluation: 0.12 min
Epoch: 001/001 | Train: 97.32% | Validation: 97.77% | Best Validation (Ep. 001): 97.77%
Time elapsed: 0.18 min
Total Training Time: 0.18 min
Test accuracy 97.40%
Total Time: 0.20 min
mlp-minst:
# cpu
Epoch: 001/001 | Train: 91.43% | Validation: 93.38% | Best Validation (Ep. 001): 93.38%
Time elapsed: 0.10 min
Total Training Time: 0.10 min
Test accuracy 91.99%
Total Time: 0.12 min
# m1
Time / epoch without evaluation: 0.06 min
Epoch: 001/001 | Train: 91.67% | Validation: 93.42% | Best Validation (Ep. 001): 93.42%
Time elapsed: 0.11 min
Total Training Time: 0.11 min
Test accuracy 92.20%
Total Time: 0.13 min
以上是关于深度学习系列50:苹果m1芯片加速pytorch的主要内容,如果未能解决你的问题,请参考以下文章
PyTorch 1.12发布,正式支持苹果M1芯片GPU加速,修复众多Bug
PyTorch 1.12发布,正式支持苹果M1芯片GPU加速,修复众多Bug
PyTorch 1.12发布,正式支持苹果M1芯片GPU加速,修复众多Bug