Hadoop

Posted AC.WJH

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Hadoop相关的知识,希望对你有一定的参考价值。

目录

采集日志Flume

 日志采集Flume安装

Flume组件选型

 日志采集Flume配置

1)Flume配置分析

 2)Flume的具体配置如下

Flume拦截器

 日志采集Flume启动停止脚本

消费Kafka数据Flume

消费者Flume配置

Flume时间拦截器

消费者Flume启动停止脚本

Flume内存优化

 采集通道启动/停止脚本


采集日志Flume

集群规划
hadoop102hadoop103hadoop104      
Flume(采集日志)FlumeFlume

 日志采集Flume安装

安装部署

1.将ae-flume-1.9.0-bin.tar.gz上传到linux的/opt/software目录下

2.解压apache-flume-1.9.0-bin.tar.gz到/opt/module/目录下

3.修改apache-flume-1.9.0-bin的名称为flume

4.将lib文件夹下的guava-11.0.2.jar删除以兼容Hadoop 3.1.3

5.将flume/conf下的flume-env.sh.template文件修改为flume-env.sh,并配置flume-env.sh文件

[atguigu@hadoop102 software]$ tar -zxf /opt/software/apache-flume-1.9.0-bin.tar.gz -C /opt/module/

[atguigu@hadoop102 module]$ mv /opt/module/apache-flume-1.9.0-bin /opt/module/flume

[atguigu@hadoop102 module]$ rm /opt/module/flume/lib/guava-11.0.2.jar

[atguigu@hadoop102 conf]$ mv flume-env.sh.template flume-env.sh

[atguigu@hadoop102 conf]$ vi flume-env.sh

export JAVA_HOME=/opt/module/jdk1.8.0_212

注意:删除guava-11.0.2.jar的服务器节点,一定要配置hadoop环境变量。否则会报异常

Flume组件选型

 日志采集Flume配置

1)Flume配置分析

 2)Flume的具体配置如下

1.在/opt/module/flume/conf目录下创建file-flume-kafka.conf文件

[atguigu@hadoop102 conf]$ vim file-flume-kafka.conf
#为各组件命名
a1.sources = r1
a1.channels = c1

#描述source
a1.sources.r1.type = TAILDIR
a1.sources.r1.filegroups = f1
a1.sources.r1.filegroups.f1 = /opt/module/applog/log/app.*
a1.sources.r1.positionFile = /opt/module/flume/taildir_position.json
a1.sources.r1.interceptors =  i1
a1.sources.r1.interceptors.i1.type = com.atguigu.flume.interceptor.ETLInterceptor$Builder

#描述channel
a1.channels.c1.type = org.apache.flume.channel.kafka.KafkaChannel
a1.channels.c1.kafka.bootstrap.servers = hadoop102:9092,hadoop103:9092
a1.channels.c1.kafka.topic = topic_log
a1.channels.c1.parseAsFlumeEvent = false

#绑定source和channel以及sink和channel的关系
a1.sources.r1.channels = c1

Flume拦截器

1)创建Maven工程flume-interceptor

2)创建包名:com.atguigu.flume.interceptor

3)   在pom.xml文件中添加如下配置

<dependencies>
    <dependency>
        <groupId>org.apache.flume</groupId>
        <artifactId>flume-ng-core</artifactId>
        <version>1.9.0</version>
        <scope>provided</scope>
    </dependency>

    <dependency>
        <groupId>com.alibaba</groupId>
        <artifactId>fastjson</artifactId>
        <version>1.2.62</version>
    </dependency>
</dependencies>

<build>
    <plugins>
        <plugin>
            <artifactId>maven-compiler-plugin</artifactId>
            <version>2.3.2</version>
            <configuration>
                <source>1.8</source>
                <target>1.8</target>
            </configuration>
        </plugin>
        <plugin>
            <artifactId>maven-assembly-plugin</artifactId>
            <configuration>
                <descriptorRefs>
                    <descriptorRef>jar-with-dependencies</descriptorRef>
                </descriptorRefs>
            </configuration>
            <executions>
                <execution>
                    <id>make-assembly</id>
                    <phase>package</phase>
                    <goals>
                        <goal>single</goal>
                    </goals>
                </execution>
            </executions>
        </plugin>
    </plugins>
</build>

4)在com.atguigu.flume.interceptor包下创建JSONUtils类

package com.atguigu.flume.interceptor;

import com.alibaba.fastjson.JSON;
import com.alibaba.fastjson.JSONException;

public class JSONUtils 
    public static boolean isJSONValidate(String log)
        try 
            JSON.parse(log);
            return true;
        catch (JSONException e)
            return false;
        
    

5)在com.atguigu.flume.interceptor包下创建LogInterceptor类

package com.atguigu.flume.interceptor;

import com.alibaba.fastjson.JSON;
import org.apache.flume.Context;
import org.apache.flume.Event;
import org.apache.flume.interceptor.Interceptor;

import java.nio.charset.StandardCharsets;
import java.util.Iterator;
import java.util.List;

public class ETLInterceptor implements Interceptor 

    @Override
    public void initialize() 

    

    @Override
    public Event intercept(Event event) 

        byte[] body = event.getBody();
        String log = new String(body, StandardCharsets.UTF_8);

        if (JSONUtils.isJSONValidate(log)) 
            return event;
         else 
            return null;
        
    

    @Override
    public List<Event> intercept(List<Event> list) 

        Iterator<Event> iterator = list.iterator();

        while (iterator.hasNext())
            Event next = iterator.next();
            if(intercept(next)==null)
                iterator.remove();
            
        

        return list;
    

    public static class Builder implements Interceptor.Builder

        @Override
        public Interceptor build() 
            return new ETLInterceptor();
        
        @Override
        public void configure(Context context) 

        

    

    @Override
    public void close() 

    

 日志采集Flume启动停止脚本

1.在home/atguigu/bin目录下创建脚本f1.sh ,并在脚本中填写如下内容

[atguigu@hadoop102 bin]$ vim f1.sh
#! /bin/bash

case $1 in
"start")
        for i in hadoop102 hadoop103
        do
                echo " --------启动 $i 采集flume-------"
                ssh $i "nohup /opt/module/flume/bin/flume-ng agent --conf-file /opt/module/flume/conf/file-flume-kafka.conf --name a1 -Dflume.root.logger=INFO,LOGFILE >/opt/module/flume/log1.txt 2>&1  &"
        done
;;	
"stop")
        for i in hadoop102 hadoop103
        do
                echo " --------停止 $i 采集flume-------"
                ssh $i "ps -ef | grep file-flume-kafka | grep -v grep |awk  'print \\$2' | xargs -n1 kill -9 "
        done

;;

2.增加脚本权限

3.f1集群启动喝停止脚本

[atguigu@hadoop102 bin]$ chmod u+x f1.sh

[atguigu@hadoop102 module]$ f1.sh start

[atguigu@hadoop102 module]$ f1.sh stop

消费Kafka数据Flume

集群规划
hadoop102hadoop103hadoop104
Flume(消费Kafka)Flume

消费者Flume配置

1)Flume配置分析

 2)Flume的具体配置如下

1.在hadoop104的/opt/module/flume/conf目录下创建kafka-flume-hdfs.conf文件

[atguigu@hadoop104 conf]$ vim kafka-flume-hdfs.conf



## 组件
a1.sources=r1
a1.channels=c1
a1.sinks=k1

## source1
a1.sources.r1.type = org.apache.flume.source.kafka.KafkaSource
a1.sources.r1.batchSize = 5000
a1.sources.r1.batchDurationMillis = 2000
a1.sources.r1.kafka.bootstrap.servers = hadoop102:9092,hadoop103:9092,hadoop104:9092
a1.sources.r1.kafka.topics=topic_log
a1.sources.r1.interceptors = i1
a1.sources.r1.interceptors.i1.type = com.atguigu.flume.interceptor.TimeStampInterceptor$Builder

## channel1
a1.channels.c1.type = file
a1.channels.c1.checkpointDir = /opt/module/flume/checkpoint/behavior1
a1.channels.c1.dataDirs = /opt/module/flume/data/behavior1/


## sink1
a1.sinks.k1.type = hdfs
a1.sinks.k1.hdfs.path = /origin_data/gmall/log/topic_log/%Y-%m-%d
a1.sinks.k1.hdfs.filePrefix = log-
a1.sinks.k1.hdfs.round = false

#控制生成的小文件
a1.sinks.k1.hdfs.rollInterval = 10
a1.sinks.k1.hdfs.rollSize = 134217728
a1.sinks.k1.hdfs.rollCount = 0

## 控制输出文件是原生文件。
a1.sinks.k1.hdfs.fileType = CompressedStream
a1.sinks.k1.hdfs.codeC = lzop

## 拼装
a1.sources.r1.channels = c1
a1.sinks.k1.channel= c1

Flume时间拦截器

     由于Flume默认会用Linux系统时间,作为输出到HDFS路径的时间。如果数据是23:59分产生的。Flume消费Kafka里面的数据时,有可能已经是第二天了,那么这部门数据会被发往第二天的HDFS路径。我们希望的是根据日志里面的实际时间,发往HDFS的路径,所以下面拦截器作用是获取日志中的实际时间。

     解决的思路:拦截json日志,通过fastjson框架解析json,获取实际时间ts。将获取的ts时间写入拦截器header头,header的key必须是timestamp,因为Flume框架会根据这个key的值识别为时间,写入到HDFS。

1)在com.atguigu.flume.interceptor包下创建TimeStampInterceptor类

package com.atguigu.flume.interceptor;

import com.alibaba.fastjson.JSONObject;
import org.apache.flume.Context;
import org.apache.flume.Event;
import org.apache.flume.interceptor.Interceptor;

import java.nio.charset.StandardCharsets;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;

public class TimeStampInterceptor implements Interceptor 

    private ArrayList<Event> events = new ArrayList<>();

    @Override
    public void initialize() 

    

    @Override
    public Event intercept(Event event) 

        Map<String, String> headers = event.getHeaders();
        String log = new String(event.getBody(), StandardCharsets.UTF_8);

        JSONObject jsonObject = JSONObject.parseObject(log);

        String ts = jsonObject.getString("ts");
        headers.put("timestamp", ts);

        return event;
    

    @Override
    public List<Event> intercept(List<Event> list) 
        events.clear();
        for (Event event : list) 
            events.add(intercept(event));
        

        return events;
    

    @Override
    public void close() 

    

    public static class Builder implements Interceptor.Builder 
        @Override
        public Interceptor build() 
            return new TimeStampInterceptor();
        

        @Override
        public void configure(Context context) 
        
    

2)重新打包

3)需要先将打好的包放入到hadoop102的/opt/module/flume/lib文件夹下面

4)分发Flume到hadoop103、hadoop104

[atguigu@hadoop102 lib]$ ls | grep interceptor
flume-interceptor-1.0-SNAPSHOT-jar-with-dependencies.jar

[atguigu@hadoop102 module]$ xsync flume/

消费者Flume启动停止脚本

1)在/home/atguigu/bin目录下创建脚本f2.sh并填写如下内容

[atguigu@hadoop102 bin]$ vim f2.sh
#! /bin/bash

case $1 in
"start")
        for i in hadoop104
        do
                echo " --------启动 $i 消费flume-------"
                ssh $i "nohup /opt/module/flume/bin/flume-ng agent --conf-file /opt/module/flume/conf/kafka-flume-hdfs.conf --name a1 -Dflume.root.logger=INFO,LOGFILE >/opt/module/flume/log2.txt   2>&1 &"
        done
;;
"stop")
        for i in hadoop104
        do
                echo " --------停止 $i 消费flume-------"
                ssh $i "ps -ef | grep kafka-flume-hdfs | grep -v grep |awk 'print \\$2' | xargs -n1 kill"
        done

;;
esac

2)增加脚本执行权限

Flume内存优化

 采集通道启动/停止脚本

1)在bin目录下创建脚本cluster.sh,并填写以下内容

[atguigu@hadoop102 bin]$ vim cluster.sh
#!/bin/bash

case $1 in
"start")
        echo ================== 启动 集群 ==================

        #启动 Zookeeper集群
        zk.sh start

        #启动 Hadoop集群
        hdp.sh start

        #启动 Kafka采集集群
        kf.sh start

        #启动 Flume采集集群
        f1.sh start

        #启动 Flume消费集群
        f2.sh start

        ;;
"stop")
        echo ================== 停止 集群 ==================

        #停止 Flume消费集群
        f2.sh stop

        #停止 Flume采集集群
        f1.sh stop

        #停止 Kafka采集集群
        kf.sh stop

        #停止 Hadoop集群
        hdp.sh stop

        #停止 Zookeeper集群
        zk.sh stop

;;
esac

2)增加脚本权限

[atguigu@hadoop102 bin]$ chmod u+x cluster.sh	

以上是关于Hadoop的主要内容,如果未能解决你的问题,请参考以下文章

通过Hadoop安全部署经验总结,开发出以下十大建议,以确保大型和复杂多样环境下的数据信息安全。

Redhat hadoop2.7.2安装笔记

HadoopAPI和exlipse关系建立

hadoop 将HDFS上多个小文件合并到SequenceFile里

windows 本地配置hadoop客户端

zookeeper群启群停脚本(start-zkstop-zk)