大数据Spark 从浅入深(第一集)
Posted 技术能量站
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了大数据Spark 从浅入深(第一集)相关的知识,希望对你有一定的参考价值。
1.Spark 是什么
Apache Spark 是用于大规模数据处理的统一分析引擎。它提供 Java、Scala、Python 和 R 中的高级 API,以及支持通用执行图的优化引擎。它还支持一组丰富的高级工具,包括用于 SQL 和结构化数据处理的Spark SQL 、用于机器学习的MLlib、用于图形处理的 GraphX,以及用于增量计算和流处理的结构化流。
1.1 Spark 和 Hadoop 是什么关系
在之前的学习中,Hadoop 的 MapReduce 是大家广为熟知的计算框架,那为什么咱们还 要学习新的计算框架 Spark 呢,这里就不得不提到 Spark 和 Hadoop 的关系。
首先从时间节点上来看:
- Hadoop
- 2006 年 1 月,Doug Cutting 加入 Yahoo,领导 Hadoop 的开发
- 2008 年 1 月,Hadoop 成为 Apache 顶级项目
- 2011 年 1.0 正式发布
- 2012 年 3 月稳定版发布
- 2013 年 10 月发布 2.X (Yarn)版本
- Spark
- 2009 年,Spark 诞生于伯克利大学的 AMPLab 实验室
- 2010 年,伯克利大学正式开源了 Spark 项目
- 2013 年 6 月,Spark 成为了 Apache 基金会下的项目
- 2014 年 2 月,Spark 以飞快的速度成为了 Apache 的顶级项目
- 2015 年至今,Spark 变得愈发火爆,大量的国内公司开始重点部署或者使用 Spark
然后我们再从功能上来看:
- Hadoop
- Hadoop 是由 java 语言编写的,在分布式服务器集群上存储海量数据并运行分布式
分析应用的开源框架 - 作为 Hadoop 分布式文件系统,HDFS 处于 Hadoop 生态圈的最下层,存储着所有
的 数 据 , 支 持 着 Hadoop 的 所 有 服 务 。 它 的 理 论 基 础 源 于 Google 的
TheGoogleFileSystem 这篇论文,它是 GFS 的开源实现。 - MapReduce 是一种编程模型,Hadoop 根据 Google 的 MapReduce 论文将其实现,
作为 Hadoop 的分布式计算模型,是 Hadoop 的核心。基于这个框架,分布式并行
程序的编写变得异常简单。综合了 HDFS 的分布式存储和 MapReduce 的分布式计
算,Hadoop 在处理海量数据时,性能横向扩展变得非常容易。 - HBase 是对 Google 的 Bigtable 的开源实现,但又和 Bigtable 存在许多不同之处。
HBase 是一个基于 HDFS 的分布式数据库,擅长实时地随机读/写超大规模数据集。
它也是 Hadoop 非常重要的组件。
- Hadoop 是由 java 语言编写的,在分布式服务器集群上存储海量数据并运行分布式
- Spark
- Spark 是一种由 Scala 语言开发的快速、通用、可扩展的大数据分析引擎
- Spark Core 中提供了 Spark 最基础与最核心的功能
- Spark SQL 是 Spark 用来操作结构化数据的组件。通过 Spark SQL,用户可以使用
SQL 或者 Apache Hive 版本的 SQL 方言(HQL)来查询数据。 - Spark Streaming 是 Spark 平台上针对实时数据进行流式计算的组件,提供了丰富的
处理数据流的 API。
由上面的信息可以获知,Spark 出现的时间相对较晚,并且主要功能主要是用于数据计算,
所以其实 Spark 一直被认为是 Hadoop 框架的升级版。
1.2 Spark 和 Hadoop 对比选型
Hadoop 的 MR 框架和 Spark 框架都是数据处理框架,那么我们在使用时如何选择呢?
- Hadoop MapReduce 由于其设计初衷并不是为了满足循环迭代式数据流处理,因此在多并行运行的数据可复用场景(如:机器学习、图挖掘算法、交互式数据挖掘算法)中存在诸多计算效率等问题。所以 Spark 应运而生,Spark 就是在传统的 MapReduce 计算框架的基础上,利用其计算过程的优化,从而大大加快了数据分析、挖掘的运行和读写速
度,并将计算单元缩小到更适合并行计算和重复使用的 RDD 计算模型 - 机器学习中 ALS、凸优化梯度下降等。这些都需要基于数据集或者数据集的衍生数据反复查询反复操作。MR 这种模式不太合适,即使多 MR 串行处理,性能和时间也是一个问题。数据的共享依赖于磁盘。另外一种是交互式数据挖掘,MR 显然不擅长。而Spark 所基于的 scala 语言恰恰擅长函数的处理。
- Spark 是一个分布式数据快速分析项目。它的核心技术是弹性分布式数据集(Resilient Distributed Datasets),提供了比 MapReduce 丰富的模型,可以快速在内存中对数据集进行多次迭代,来支持复杂的数据挖掘算法和图形计算算法。
- Spark 和Hadoop 的根本差异是多个作业之间的数据通信问题 : Spark 多个作业之间数据通信是基于内存,而 Hadoop 是基于磁盘。
- Spark Task 的启动时间快。Spark 采用 fork 线程的方式,而 Hadoop 采用创建新的进程的方式。
- Spark 只有在 shuffle 的时候将数据写入磁盘,而 Hadoop 中多个 MR 作业之间的数据交互都要依赖于磁盘交互
- Spark 的缓存机制比 HDFS 的缓存机制高效。
经过上面的比较,我们可以看出在绝大多数的数据计算场景中,Spark 确实会比 MapReduce更有优势。但是 Spark 是基于内存的,所以在实际的生产环境中,由于内存的限制,可能会由于内存资源不够导致 Job 执行失败,此时,MapReduce 其实是一个更好的选择,所以 Spark并不能完全替代 MR。
1.3 Spark 核心模块
- Spark Core 中提供了 Spark 最基础与最核心的功能,Spark 其他的功能如:Spark SQL,
Spark Streaming,GraphX, MLlib 都是在 Spark Core 的基础上进行扩展的 - Spark SQL 是 Spark 用来操作结构化数据的组件。通过 Spark SQL,用户可以使用 SQL
或者 Apache Hive 版本的 SQL 方言(HQL)来查询数据。 - Spark Streaming 是 Spark 平台上针对实时数据进行流式计算的组件,提供了丰富的处理
数据流的 API。 - Spark MLlib 是 Spark 提供的一个机器学习算法库。MLlib 不仅提供了模型评估、数据导入等
额外的功能,还提供了一些更底层的机器学习原语。 - Spark GraphX 是 Spark 面向图计算提供的框架与算法库。
2. Spark 快速上手
2.1 增加Scala插件
Spark 由 Scala 语言开发的,当前使用的 Spark 版本为 3.0.0,默认采用的 Scala 编译版本为 2.12,所以后续开发时。我们依然采用这个版本。开发前请保证 IDEA 开发工具中含有 Scala 开发插件
2.2 增加依赖关系
修改 Maven 项目中的 POM 文件,增加 Spark 框架的依赖关系。基于 Spark3.0 版本,使用时请注意对应版本。
<dependencies>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.12</artifactId>
<version>3.0.0</version>
</dependency>
</dependencies>
2.3 WordCount
为了能直观地感受 Spark 框架的效果,接下来我们实现一个大数据学科中最常见的教学
案例 WordCount
// 创建 Spark 运行配置对象
val sparkConf = new SparkConf().setMaster("local[*]").setAppName("WordCount")
// 创建 Spark 上下文环境对象(连接对象)
val sc : SparkContext = new SparkContext(sparkConf)
// 读取文件数据
val fileRDD: RDD[String] = sc.textFile("input/word.txt")
// 将文件中的数据进行分词
val wordRDD: RDD[String] = fileRDD.flatMap( _.split(" ") )
// 转换数据结构 word => (word, 1)
val word2OneRDD: RDD[(String, Int)] = wordRDD.map((_,1))
// 将转换结构后的数据按照相同的单词进行分组聚合
val word2CountRDD: RDD[(String, Int)] = word2OneRDD.reduceByKey(_+_)
// 将数据聚合结果采集到内存中
val word2Count: Array[(String, Int)] = word2CountRDD.collect()
// 打印结果
word2Count.foreach(println)
//关闭 Spark 连接
sc.stop()
执行过程中,会产生大量的执行日志,如果为了能够更好的查看程序的执行结果,可以在项
目的 resources 目录中创建 log4j.properties 文件,并添加日志配置信息:
log4j.rootCategory=ERROR, console
log4j.appender.console=org.apache.log4j.ConsoleAppender
log4j.appender.console.target=System.err
log4j.appender.console.layout=org.apache.log4j.PatternLayout
log4j.appender.console.layout.ConversionPattern=%dyy/MM/dd
HH:mm:ss %p %c1: %m%n
# Set the default spark-shell log level to ERROR. When running the spark-shell,
the
# log level for this class is used to overwrite the root logger's log level, so
that
# the user can have different defaults for the shell and regular Spark apps.
log4j.logger.org.apache.spark.repl.Main=ERROR
# Settings to quiet third party logs that are too verbose
log4j.logger.org.spark_project.jetty=ERROR
log4j.logger.org.spark_project.jetty.util.component.AbstractLifeCycle=ERROR
log4j.logger.org.apache.spark.repl.SparkIMain$exprTyper=ERROR
log4j.logger.org.apache.spark.repl.SparkILoop$SparkILoopInterpreter=ERROR
log4j.logger.org.apache.parquet=ERROR
log4j.logger.parquet=ERROR
# SPARK-9183: Settings to avoid annoying messages when looking up nonexistent
UDFs in SparkSQL with Hive support
log4j.logger.org.apache.hadoop.hive.metastore.RetryingHMSHandler=FATAL
log4j.logger.org.apache.hadoop.hive.ql.exec.FunctionRegistry=ERROR
执行结果:
2.4 异常处理
如果本机操作系统是 Windows,在程序中使用了 Hadoop 相关的东西,比如写入文件到
HDFS,则会遇到如下异常:
出现这个问题的原因,并不是程序的错误,而是 windows 系统用到了 hadoop 相关的服
务,解决办法是通过配置关联到 windows 的系统依赖就可以了
3. 小总结
本文主要介绍了 什么是Spark,Spark的由来以及Spark和Hadoop的关系,通过两者的功能对比帮助在日后的工作中Spark和Hadoop我们该如何选型等相关的内容。
突破知识盲区很重要,各位的点赞评论都对我也很重要,如果这篇文章有帮助你多一点点了解spark 的话,可以在评论区来一波“变得更强”。
以上是关于大数据Spark 从浅入深(第一集)的主要内容,如果未能解决你的问题,请参考以下文章
Python自动化开发从浅入深-进阶(socketServer)