Android9.0源码学习-Sensor Framework
Posted Dufre.WC
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Android9.0源码学习-Sensor Framework相关的知识,希望对你有一定的参考价值。
文章目录
在之前的学习中, Android Sensor概述介绍了常用传感器的功能,测量值的含义,测量原理等等。 Android Sensor应用介绍了app如何得到Sensor的数值。那么接下来就应该思考应用层是如何得到硬件测量的数值,传感器的数值又是如何一步一步上传至应用层的。
FileList
Framework(/frameworks/base/core/java/android/hardware/)
SensorManager.java
:SDK接口,封装了Sensor相关的API,提供给APP层使用。SystemSensorManager.java
:继承于SensorManager,SensorManager的实现类,负责与系统Sensor的联系。Sensor.java
:代表一个Sensor类SensorEvent.java
:代表一个SensorEvent类SensorEventListener.java
:用于接收传感器事件的Interface
JNI(/framework/base/core/jni)
android_hardware_SensorManager.cpp
:负责Java层和Native层的通信
Native Framework
- Client(/framework/native/lib/sensor)
SensorManager.cpp
:SensorManager的Native层,负责与SensorService的通信SensorEventQueue.cpp
:消息队列Sensor.cpp
:Sensor的native层ISensorServer.cpp
:SensorServer在客户端接口ISensorEventConnection.cpp
:SensorEventConnection在客户端接口BitTube.cpp
:单向字节管道,提供进程间单向数据通信功能。
- Server(/framework/native/services/sensorservice)
SensorDevice.cpp
:负责管理和维护系统中所有的Sensor,封装了Sensor的使能,配置,数据读取等功能。SensorInterface.cpp
:服务端Sensor接口SensorService.cpp
:是整个Android Sensor Framework最核心的模块,它实现了主要的Sensor控制流和数据流,完成Sensor的参数配置,数据分发SensorEventConnection.cpp
:Sensor的数据传输通道,当Client开始监听某一个Sensor时,一个对应的SensorEventConnection将会被创建,Server端在接收到Sensor数据后,通过写入到SensorEventConnection传递给Client端。
Questions
在Framework的学习中,我们需要搞清楚以下几个问题?
- APP层的控制指令是怎样一层一层下发到Framework层和HAL层?
- sensor采集到的数据又是怎样一层一层传到APP层?
- Client端和Server端又是怎样交互的,数据是如何通讯的?
- 当系统第一次创建SensorService时,SensorService做了哪些初始化的工作?
SensorService初始化
SystemServer的main函数,会调用startSensorService()
,从而创建第一个SensorService
实例。当SensorService第一个实例创建时,其onFirstRef()
接口会被调用。
onFirstRef()
做了这么以下几个工作:
- 创建SensorDevice的实例(
SensorDevice& dev(SensorDevice::getInstance());
),并且是单例类connectHidlService()
mSensors = ISensors::getService()
Sensors::Sensors()
hw_get_module()
加载Sensor HAL的动态库sensors_open_1()
执行Sensor HAL的初始化
- 初始化
mSensorList
(Vector<sensor_t> mSensorList
) mSensors->activate()
- 通过dev获取SensorList(
list
) - registerSensor
- 创建Looper(
mLooper = new Looper(false)
),用于enable sensor后,进行数据的接收 - 创建SensorEventAckReceiver(
mAckReceiver = new SensorEventAckReceiver(this)
):用于在dispatch wake up sensor event给上层后,接收上层返回的确认ACK。
registerListener流程分析
APP
下面的代码是在Android官网提供的APP获取light sensor数据的代码段,这里在获取SensorManager和Sensor后,会调用sensorManager.registerListener(this, mLight, SensorManager.SENSOR_DELAY_NORMAL);
注册。
public class SensorActivity extends Activity implements SensorEventListener
private SensorManager sensorManager;
private Sensor mLight;
@Override
public final void onCreate(Bundle savedInstanceState)
super.onCreate(savedInstanceState);
setContentView(R.layout.main);
sensorManager = (SensorManager) getSystemService(Context.SENSOR_SERVICE);
mLight = sensorManager.getDefaultSensor(Sensor.TYPE_LIGHT);
@Override
public final void onAccuracyChanged(Sensor sensor, int accuracy)
// Do something here if sensor accuracy changes.
@Override
public final void onSensorChanged(SensorEvent event)
// The light sensor returns a single value.
// Many sensors return 3 values, one for each axis.
float lux = event.values[0];
// Do something with this sensor value.
@Override
protected void onResume()
super.onResume();
sensorManager.registerListener(this, mLight, SensorManager.SENSOR_DELAY_NORMAL);
@Override
protected void onPause()
super.onPause();
sensorManager.unregisterListener(this);
Framework
Java
在java层的调用顺序为
SensorManager.java
registerListener()
registerListenerImpl()
SystemSensorManager.java
registerListenerImpl()
registerListenerImpl()
会维护一个mSensorListeners
的HashMap(HashMap<SensorEventListener, SensorEventQueue> mSensorListeners
)。
queue.addSensor()
(SensorEventQueue queue
)mActiveSensors.put(handle, true)
(handle = snesor.getHandle()
)enableSensor()
nativeEnableSensor()
到这里会通过JNI去call到Native层
/frameworks/base/core/java/android/hardware/SystemSensorManager.java
@Override
protected boolean registerListenerImpl(SensorEventListener listener, Sensor sensor,
int delayUs, Handler handler, int maxBatchReportLatencyUs, int reservedFlags)
if (listener == null || sensor == null)
Log.e(TAG, "sensor or listener is null");
return false;
// Trigger Sensors should use the requestTriggerSensor call.
if (sensor.getReportingMode() == Sensor.REPORTING_MODE_ONE_SHOT)
Log.e(TAG, "Trigger Sensors should use the requestTriggerSensor.");
return false;
if (maxBatchReportLatencyUs < 0 || delayUs < 0)
Log.e(TAG, "maxBatchReportLatencyUs and delayUs should be non-negative");
return false;
if (mSensorListeners.size() >= MAX_LISTENER_COUNT)
throw new IllegalStateException("register failed, "
+ "the sensor listeners size has exceeded the maximum limit "
+ MAX_LISTENER_COUNT);
// Invariants to preserve:
// - one Looper per SensorEventListener
// - one Looper per SensorEventQueue
// We map SensorEventListener to a SensorEventQueue, which holds the looper
synchronized (mSensorListeners)
SensorEventQueue queue = mSensorListeners.get(listener);
if (queue == null)
Looper looper = (handler != null) ? handler.getLooper() : mMainLooper;
final String fullClassName =
listener.getClass().getEnclosingClass() != null
? listener.getClass().getEnclosingClass().getName()
: listener.getClass().getName();
queue = new SensorEventQueue(listener, looper, this, fullClassName);
if (!queue.addSensor(sensor, delayUs, maxBatchReportLatencyUs))
queue.dispose();
return false;
mSensorListeners.put(listener, queue);
return true;
else
return queue.addSensor(sensor, delayUs, maxBatchReportLatencyUs);
Native
Client
通过JNI,java层的enableSensor()
会call到SensorEventQueue.cpp的enableSensor()
,到这里就要去通过mSensorEventConnection
(const sp<ISensorEventConnection>
)去call到Server端了。
/frameworks/native/libs/sensor/SensorEventQueue.cpp
status_t SensorEventQueue::enableSensor(Sensor const* sensor, int32_t samplingPeriodUs) const
return mSensorEventConnection->enableDisable(sensor->getHandle(), true,
us2ns(samplingPeriodUs), 0, 0);
/frameworks/native/libs/sensor/ISensorEventConnection.cpp
virtual status_t enableDisable(int handle, bool enabled, nsecs_t samplingPeriodNs,
nsecs_t maxBatchReportLatencyNs, int reservedFlags)
Parcel data, reply;
data.writeInterfaceToken(ISensorEventConnection::getInterfaceDescriptor());
data.writeInt32(handle);
data.writeInt32(enabled);
data.writeInt64(samplingPeriodNs);
data.writeInt64(maxBatchReportLatencyNs);
data.writeInt32(reservedFlags);
remote()->transact(ENABLE_DISABLE, data, &reply);
return reply.readInt32();
Server
/frameworks/native/services/sensorservice/SensorEventConnection.cpp
status_t SensorService::SensorEventConnection::enableDisable(
int handle, bool enabled, nsecs_t samplingPeriodNs, nsecs_t maxBatchReportLatencyNs,
int reservedFlags)
status_t err;
if (enabled)
err = mService->enable(this, handle, samplingPeriodNs, maxBatchReportLatencyNs,
reservedFlags, mOpPackageName);
else
err = mService->disable(this, handle);
return err;
在Server端是调用到了SensorService.cpp的enable()
,它获取了sensor
在HAL层的实例,
sensor->batch()
sensor->activate()
/frameworks/native/services/sensorservice/SensorService.cpp
status_t SensorService::enable(const sp<SensorEventConnection>& connection,
int handle, nsecs_t samplingPeriodNs, nsecs_t maxBatchReportLatencyNs, int reservedFlags,
const String16& opPackageName)
if (mInitCheck != NO_ERROR)
return mInitCheck;
sp<SensorInterface> sensor = getSensorInterfaceFromHandle(handle);
if (sensor == nullptr ||
!canAccessSensor(sensor->getSensor(), "Tried enabling", opPackageName))
return BAD_VALUE;
Mutex::Autolock _l(mLock);
if (mCurrentOperatingMode != NORMAL
&& !isWhiteListedPackage(connection->getPackageName()))
return INVALID_OPERATION;
SensorRecord* rec = mActiveSensors.valueFor(handle);
if (rec == 0)
rec = new SensorRecord(connection);
mActiveSensors.add(handle, rec);
if (sensor->isVirtual())
mActiveVirtualSensors.emplace(handle);
else
if (rec->addConnection(connection))
// this sensor is already activated, but we are adding a connection that uses it.
// Immediately send down the last known value of the requested sensor if it's not a
// "continuous" sensor.
if (sensor->getSensor().getReportingMode() == AREPORTING_MODE_ON_CHANGE)
// NOTE: The wake_up flag of this event may get set to
// WAKE_UP_SENSOR_EVENT_NEEDS_ACK if this is a wake_up event.
auto logger = mRecentEvent.find(handle);
if (logger != mRecentEvent.end())
sensors_event_t event;
// It is unlikely that this buffer is empty as the sensor is already active.
// One possible corner case may be two applications activating an on-change
// sensor at the same time.
if(logger->second->populateLastEvent(&event))
event.sensor = handle;
if (event.version == sizeof(sensors_event_t))
if (isWakeUpSensorEvent(event) && !mWakeLockAcquired)
setWakeLockAcquiredLocked(true);
connection->sendEvents(&event, 1, NULL);
if (!connection->needsWakeLock() && mWakeLockAcquired)
checkWakeLockStateLocked();
if (connection->addSensor(handle))
BatteryService::enableSensor(connection->getUid(), handle);
// the sensor was added (which means it wasn't already there)
// so, see if this connection becomes active
if (mActiveConnections.indexOf(connection) < 0)
mActiveConnections.add(connection);
else
ALOGW("sensor %08x already enabled in connection %p (ignoring)",
handle, connection.get());
// Check maximum delay for the sensor.
nsecs_t maxDelayNs = sensor->getSensor().getMaxDelay() * 1000LL;
if (maxDelayNs > 0 && (samplingPeriodNs > maxDelayNs))
samplingPeriodNs = maxDelayNs;
nsecs_t minDelayNs = sensor->getSensor().getMinDelayNs();
if (samplingPeriodNs < minDelayNs)
samplingPeriodNs = minDelayNs;
ALOGD_IF(DEBUG_CONNECTIONS, "Calling batch handle==%d flags=%d"
"rate=%" PRId64 " timeout== %" PRId64"",
handle, reservedFlags, samplingPeriodNs, maxBatchReportLatencyNs);
status_t err = sensor->batch(connection.get(), handle, 0, samplingPeriodNs,
maxBatchReportLatencyNs);
// Call flush() before calling activate() on the sensor. Wait for a first
// flush complete event before sending events on this connection. Ignore
// one-shot sensors which don't support flush(). Ignore on-change sensors
// to maintain the on-change logic (any on-change events except the initial
// one should be trigger by a change in value). Also if this sensor isn't
// already active, don't call flush().
if (err == NO_ERROR &&
sensor->getSensor().getReportingMode() == AREPORTING_MODE_CONTINUOUS &&
rec->getNumConnections() > 1)
connection->setFirstFlushPending(handle, true);
status_t err_flush = sensor->flush(connection.get(), handle);
// Flush may return error if the underlying h/w sensor uses an older HAL.
if (err_flush == NO_ERROR)
rec->addPendingFlushConnection(connection.get());
else
connection->setFirstFlushPending(handle, false);
if (err == NO_ERROR)
ALOGD_IF(DEBUG_CONNECTIONS, "Calling activate on %d", handle);
err = sensor->activate(connection.get(), true);
if (err == NO_ERROR)
connection->updateLooperRegistration(mLooper);
mLastNSensorRegistrations.editItemAt(mNextSensorRegIndex) =
SensorRegistrationInfo(handle, connection->getPackageName(),
samplingPeriodNs, maxBatchReportLatencyNs, true);
mNextSensorRegIndex = (mNextSensorRegIndex + 1) % SENSOR_REGISTRATIONS_BUF_SIZE;
if (err != NO_ERROR)
// batch/activate has failed, reset our state.
cleanupWithoutDisableLocked(connection, handle);
return err;
How the app get sensor data
Server
接下来分析,数据是如何传递到APP的,刚才有讲到在SensorService的onFirstRef()
函数中,会new一个Looper(),我们来看看这里面做了什么。
SensorDevice& device(SensorDevice::getInstance())
device.poll()
轮询,获取SensorEventBufferrecordLastValueLocked(mSensorEventBuffer, count)
记录前几次的数据- handle virtual sensors
activeConnections[i]->sendEvents()
发送events到客户端
这里activeConnections
是一个SensorEventConnection
数组,因此它调用了SensorEventConnection
的sendEvents()
。
/frameworks/native/services/sensorservice/SensorService.cpp
bool SensorService::threadLoop()
ALOGD("nuSensorService thread starting...");
// each virtual sensor could generate an event per "real" event, that's why we need to size
// numEventMax much smaller than MAX_RECEIVE_BUFFER_EVENT_COUNT. in practice, this is too
// aggressive, but guaranteed to be enough.
const size_t vcount = mSensors.getVirtualSensors().size();
const size_t minBufferSize = SensorEventQueue::MAX_RECEIVE_BUFFER_EVENT_COUNT;
const size_t numEventMax = minBufferSize / (1 + vcount);
SensorDevice& device(SensorDevice::getInstance());
const int halVersion = device.getHalDeviceVersion();
do
ssize_t count = device.poll(mSensorEventBuffer, numEventMax);
if (count < 0)
ALOGE("sensor poll failed (%s)", strerror(-count));
break;
// Reset sensors_event_t.flags to zero for all events in the buffer.
for (int i = 0; i < count; i++)
mSensorEventBuffer[i].flags = 0;
// Make a copy of the connection vector as some connections may be removed during the course
// of this loop (especially when one-shot sensor events are present in the sensor_event
// buffer). Promote all connections to StrongPointers before the lock is acquired. If the
// destructor of the sp gets called when the lock is acquired, it may result in a deadlock
// as ~SensorEventConnection() needs to acquire mLock again for cleanup. So copy all the
// strongPointers to a vector before the lock is acquired.
SortedVector< sp<SensorEventConnection> > activeConnections;
populateActiveConnections(&activeConnections);
Mutex::Autolock _l(mLock);
// Poll has returned. Hold a wakelock if one of the events is from a wake up sensor. The
// rest of this loop is under a critical section protected by mLock. Acquiring a wakeLock,
// sending events to clients (incrementing SensorEventConnection::mWakeLockRefCount) should<以上是关于Android9.0源码学习-Sensor Framework的主要内容,如果未能解决你的问题,请参考以下文章