MySQL索引

Posted 任我驰骋.

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了MySQL索引相关的知识,希望对你有一定的参考价值。

索引

一、索引是什么

索引:提高数据库的性能,索引是物美价廉的东西了。不用加内存,不用改程序,不用调sql,只要执行正确的create index ,查询速度就可能提高成百上千倍。但是天下没有免费的午餐,查询速度的提高是以插入、更新、删除的速度为代价的,这些写操作,增加了大量的IO。所以它的价值,在于提高一个海量数据的检索速度。

常见索引分为:
主键索引(primary key)
唯一索引(unique)
普通索引(index)
全文索引(fulltext)–解决中子文索引问题。

二、认识磁盘

MySQL与存储:

mysql 给用户提供存储服务,而存储的都是数据,数据在磁盘这个外设当中。磁盘是计算机中的一个机械设备,相
比于计算机其他电子元件,磁盘效率是比较低的,在加上IO本身的特征,可以知道,如何提交效率,是 MySQL 的一
个重要话题。

先来研究一下磁盘:

在看看磁盘中一个盘片:

扇区
数据库文件,本质其实就是保存在磁盘的盘片当中。也就是上面的一个个小格子中,就是我们经常所说的扇区。当然,数据库文件很大,也很多,一定需要占据多个扇区。

我们在使用Linux,所看到的大部分目录或者文件,其实就是保存在硬盘当中的。

所以,最基本的,找到一个文件的全部,本质,就是在磁盘找到所有保存文件的扇区。

而我们能够定位任何一个扇区,那么便能找到所有扇区,因为查找方式是一样的。

结论
我们现在已经能够在硬件层面定位,任何一个基本数据块了(扇区)。那么在系统软件上,就直接按照扇区(512字节,部分4096字节),进行IO交互吗?不是

如果操作系统直接使用硬件提供的数据大小进行交互,那么系统的IO代码,就和硬件强相关,换言之,如果硬件发生变化,系统必须跟着变化

从目前来看,单次IO 512字节,还是太小了。IO单位小,意味着读取同样的数据内容,需要进行多次磁盘访问,会带来效率的降低。

之前学习文件系统,就是在磁盘的基本结构下建立的,文件系统读取基本单位,就不是扇区,而是数据块。

故,系统读取磁盘,是以块为单位的,基本单位是 4KB 。

磁盘随机访问(Random Access)与连续访问(Sequential Access)
随机访问:本次IO所给出的扇区地址和上次IO给出扇区地址不连续,这样的话磁头在两次IO操作之间需要作比较大的移动动作才能重新开始读/写数据。

连续访问:如果当次IO给出的扇区地址与上次IO结束的扇区地址是连续的,那磁头就能很快的开始这次IO操作,这样的多个IO操作称为连续访问。

因此尽管相邻的两次IO操作在同一时刻发出,但如果它们的请求的扇区地址相差很大的话也只能称为随机访问,而非连续访问。

磁盘是通过机械运动进行寻址的,随机访问不需要过多的定位,故效率比较高。

三、MySQL 与磁盘交互基本单位

而 MySQL 作为一款应用软件,可以想象成一种特殊的文件系统。它有着更高的IO场景,所以,为了提高基本的IO效率, MySQL 进行IO的基本单位是 16KB

也就是说,磁盘这个硬件设备的基本单位是 512 字节,而 MySQL InnoDB引擎 使用 16KB 进行IO交互。即, MySQL 和磁盘进行数据交互的基本单位是 16KB 。这个基本数据单元,在 MySQL 这里叫做page(注意和系统的page区分)

四、建立共识

  1. MySQL 中的数据文件,是以page为单位保存在磁盘当中的。
  2. MySQL 的 CURD 操作,都需要通过计算,找到对应的插入位置,或者找到对应要修改或者查询的数据。
  3. 而只要涉及计算,就需要CPU参与,而为了便于CPU参与 一定要能够先将数据移动到内存当中。
  4. 所以在特定时间内,数据一定是磁盘中有,内存中也有。后续操作完内存数据之后,以特定的刷新策略,刷新到磁盘。而这时,就涉及到磁盘和内存的数据交互,也就是IO了。而此时IO的基本单位就是Page。
  5. 为了更好的进行上面的操作, MySQL 服务器在内存中运行的时候,在服务器内部,就申请了被称为 Buffer Pool 的的大内存空间,来进行各种缓存。其实就是很大的内存空间,来和磁盘数据进行IO交互。
  6. 为何更高的效率,一定要尽可能的减少系统和磁盘IO的次数

五、索引的理解

建立测试表

插入多条记录

查看插入结果

中断一下—为何IO交互要是 Page

理解单个Page
MySQL 中要管理很多数据表文件,而要管理好这些文件,就需要 先描述,在组织 ,我们目前可以简单理解成一个个独立文件是有一个或者多个Page构成的。

不同的 Page ,在 MySQL 中,都是 16KB ,使用 prev 和 next 构成双向链表

因为有主键的问题, MySQL 会默认按照主键给我们的数据进行排序,从上面的Page内数据记录可以看出,数据是有序且彼此关联的。

理解多个Page
通过上面的分析,我们知道,上面页模式中,只有一个功能,就是在查询某条数据的时候直接将一整页的数据加载到内存中,以减少硬盘IO次数,从而提高性能。但是,我们也可以看到,现在的页模式内部,实际上是采用了链表的结构,前一条数据指向后一条数据,本质上还是通过数据的逐条比较来取出特定的数据。

如果有1千万条数据,一定需要多个Page来保存1千万条数据,多个Page彼此使用双链表链接起来,而且每个Page内部的数据也是基于链表的。那么,查找特定一条记录,也一定是线性查找。这效率也太低了。


单页情况

那么当前,在一个Page内部,我们引入了目录。比如,我们要查找id=4记录,之前必须线性遍历4次,才能拿到结果。现在直接通过目录2[3],直接进行定位新的起始位置,提高了效率。现在我们可以再次正式回答上面的问题了,为何通过键值 MySQL 会自动排序?
可以很方便引入目录

多页情况
MySQL 中每一页的大小只有 16KB ,单个Page大小固定,所以随着数据量不断增大, 16KB 不可能存下所有的数据,那么必定会有多个页来存储数据。

在单表数据不断被插入的情况下, MySQL 会在容量不足的时候,自动开辟新的Page来保存新的数据,然后通过指针的方式,将所有的Page组织起来。

这样,我们就可以通过多个Page遍历,Page内部通过目录来快速定位数据。可是,貌似这样也有效率问题,在Page之间,也是需要 MySQL 遍历的,遍历意味着依旧需要进行大量的IO,将下一个Page加载到内存,进行线性检测。这样就显得我们之前的Page内部的目录,有点杯水车薪了。

那么如何解决呢?解决方案,其实就是我们之前的思路,给Page也带上目录。

使用一个目录项来指向某一页,而这个目录项存放的就是将要指向的页中存放的最小数据的键值。
和页内目录不同的地方在于,这种目录管理的级别是页,而页内目录管理的级别是行。
其中,每个目录项的构成是:键值+指针。图中没有画全。

存在一个目录页来管理页目录,目录页中的数据存放的就是指向的那一页中最小的数据。有数据,就可通过比较,找到该访问那个Page,进而通过指针,找到下一个Page。

其实目录页的本质也是页,普通页中存的数据是用户数据,而目录页中存的数据是普通页的地址。

可是,我们每次检索数据的时候,该从哪里开始呢?虽然顶层的目录页少了,但是还要遍历啊?不用担心,可以在加目录页


这货就是传说中的B+树啊!没错,至此,我们已经给我们的表user构建完了主键索引。

复盘一下
Page分为目录页和数据页。目录页只放各个下级Page的最小键值。
查找的时候,自定向下找,只需要加载部分目录页到内存,即可完成算法的整个查找过程,大大减少了IO次数

五、为什么B+索引

InnoDB 在建立索引结构来管理数据的时候,其他数据结构为何不行?

链表?线性遍历

二叉搜索树?退化问题,可能退化成为线性结构

AVL &&红黑树?虽然是平衡或者近似平衡,但是毕竟是二叉结构,相比较多阶B+,意味着树整体过高,大家都是自顶向下找,层高越低,意味着系统与硬盘更少的IO Page交互。

Hash?官方的索引实现方式中, MySQL 是支持HASH的,不过 InnoDB 和 MyISAM 并不支持.Hash跟进其算法特征,决定了虽然有时候也很快(O(1)),不过,在面对范围查找就明显不行。

最值得比较的是 InnoDB 为何不用B树作为底层索引?

B+ vs B

B树

B+树


目前这两棵树,对我们最有意义的区别是:

B树节点,既有数据,又有Page指针,而B+,只有叶子节点有数据,其他目录页,只有键值和Page指针
B+叶子节点,全部相连,而B没有

为何选择B+?

节点不存储data,这样一个节点就可以存储更多的key。可以使得树更矮,所以IO操作次数更少。
叶子节点相连,更便于进行范围查找

聚簇索引 VS 非聚簇索引

MyISAM 存储引擎-主键索引

MyISAM 引擎同样使用B+树作为索引结果,叶节点的data域存放的是数据记录的地址。下图为 MyISAM 表的主索引,Col1 为主键。

其中, MyISAM 最大的特点是,将索引Page和数据Page分离,也就是叶子节点没有数据,只有对应数据的地址。

相较于 InnoDB 索引, InnoDB 是将索引和数据放在一起的。


其中, MyISAM 这种用户数据与索引数据分离的索引方案,叫做非聚簇索引


其中, InnoDB 这种用户数据与索引数据在一起索引方案,叫做聚簇索引

当然, MySQL 除了默认会建立主键索引外,我们用户也有可能建立按照其他列信息建立的索引,一般这种索引可以叫做辅助(普通)索引。

对于 MyISAM ,建立辅助(普通)索引和主键索引没有差别,无非就是主键不能重复,而非主键可重复。

下图就是基于 MyISAM 的 Col2 建立的索引,和主键索引没有差别

同样, InnoDB 除了主键索引,用户也会建立辅助(普通)索引,我们以上表中的 Col3 建立对应的辅助索引如下图:

可以看到, InnoDB 的非主键索引中叶子节点并没有数据,而只有对应记录的key值。

所以通过辅助(普通)索引,找到目标记录,需要两遍索引:首先检索辅助索引获得主键,然后用主键到主索引中检索获得记录。这种过程,就叫做回表查询

为何 InnoDB 针对这种辅助(普通)索引的场景,不给叶子节点也附上数据呢?原因就是太浪费空间了。

那么,什么时候用聚簇索引,什么时候用非聚簇索引呢?

  1. 如果是有复杂操作的话使用InnoDB引擎,即聚簇索引支持事务
  2. 如果是查找操作的话使用非聚簇索引,使用聚簇索引的话会有回表的情况,影响效率
  3. 非聚簇索引支持全文索引,而聚簇索引不支持全文索引。

六、索引操作

创建主键索引
第一种方式:

第二种方式:

第三种方式:

主键索引的特点:
一个表中,最多有一个主键索引,当然可以使符合主键
主键索引的效率高(主键不可重复)
创建主键索引的列,它的值不能为null,且不能重复
主键索引的列基本上是int

唯一索引的创建
第一种方式:

第二种方式:

第三种方式:
唯一索引的特点:
一个表中,可以有多个唯一索引
查询效率高
如果在某一列建立唯一索引,必须保证这列不能有重复数据
如果一个唯一索引上指定not null,等价于主键索引

普通索引的创建
第一种方式

第二种方式

第三种方式

普通索引的特点:
一个表中可以有多个普通索引,普通索引在实际开发中用的比较多
如果某列需要创建索引,但是该列有重复的值,那么我们就应该使用普通索引

全文索引的创建
当对文章字段或有大量文字的字段进行检索时,会使用到全文索引。MySQL提供全文索引机制,但是有要求,要求表的存储引擎必须是MyISAM,而且默认的全文索引支持英文,不支持中文。如果对中文进行全文检索,可以使用sphinx的中文版(coreseek)。


查询有没有database数据

如果使用如下查询方式,虽然查询出数据,但是没有使用到全文索引


可以用explain工具看一下,是否使用到索引


如何使用全文索引呢?

通过explain来分析这个sql语句

查询索引
第一种方法: show keys from 表名

第二种方法: show index from 表名;
第三种方法: desc 表名;

删除索引
第一种方法-删除主键索引: alter table 表名 drop primary key;

第二种方法-其他索引的删除: alter table 表名 drop index 索引名; 索引名就是show keys from 表名中的Key_name 字段

第三种方法方法: drop index 索引名 on 表名
mysql> drop index name on user8;

七、索引创建原则

比较频繁作为查询条件的字段应该创建索引
唯一性太差的字段不适合单独创建索引,即使频繁作为查询条件
更新非常频繁的字段不适合作创建索引
不会出现在where子句中的字段不该创建索引

以上是关于MySQL索引的主要内容,如果未能解决你的问题,请参考以下文章

MySQL索引

MySQL 索引

MySQL 索引

MySQL 索引

MySql索引

MySql索引