图像压缩基于matlab GUI小波变换图像压缩含Matlab源码 609期

Posted 海神之光

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了图像压缩基于matlab GUI小波变换图像压缩含Matlab源码 609期相关的知识,希望对你有一定的参考价值。

一、简介

1974年,法国工程师J.Morlet首先提出小波变换的概念,1986年著名数学家Y.Meyer偶然构造出一个真正的小波基,并与S.Mallat合作建立了构造小波基的多尺度分析之后,小波分析才开始蓬勃发展起来。小波分析的应用领域十分广泛,在数学方面,它已用于数值分析、构造快速数值方法、曲线曲面构造、微分方程求解、控制论等。在信号分析方面的滤波、去噪声、压缩、传递等。在图像处理方面的图像压缩、分类、识别与诊断,去噪声等。本章将着重阐述小波在图像中的应用分析。
1 小波变换原理
小波分析是一个比较难的分支,用户采用小波变换,可以实现图像压缩,振动信号的分解与重构等,因此在实际工程上应用较广泛。小波分析与Fourier变换相比,小波变换是空间域和频率域的局部变换,因而能有效地从信号中提取信息。小波变换通过伸缩和平移等基本运算,实现对信号的多尺度分解与重构,从而很大程度上解决了Fourier变换带来的很多难题。
小波分析作一个新的数学分支,它是泛函分析、Fourier分析、数值分析的完美结晶;小波分析也是一种“时间—尺度”分析和多分辨分析的新技术,它在信号分析、语音合成、图像压缩与识别、大气与海洋波分析等方面的研究,都有广泛的应用。
(1)小波分析用于信号与图像压缩。小波压缩的特点是压缩比高,压缩速度快,压缩后能保持信号与图像的特征不变,且在传递中能够抗干扰。基于小波分析的压缩方法很多,具体有小波压缩,小波包压缩,小波变换向量压缩等。
(2)小波也可以用于信号的滤波去噪、信号的时频分析、信噪分离与提取弱信号、求分形指数、信号的识别与诊断以及多尺度边缘检测等。
(3)小波分析在工程技术等方面的应用概括的包括计算机视觉、曲线设计、湍流、远程宇宙的研究与生物医学方面。
2 多尺度分析

3 图像的分解和量化

4 图像压缩编码

5 图像编码评价

二、源代码

unction varargout = multi_wavelet(varargin)

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name',       mfilename, ...
                   'gui_Singleton',  gui_Singleton, ...
                   'gui_OpeningFcn', @multi_wavelet_OpeningFcn, ...
                   'gui_OutputFcn',  @multi_wavelet_OutputFcn, ...
                   'gui_LayoutFcn',  [] , ...
                   'gui_Callback',   []);
if nargin && ischar(varargin1)
    gui_State.gui_Callback = str2func(varargin1);
end

if nargout
    [varargout1:nargout] = gui_mainfcn(gui_State, varargin:);
else
    gui_mainfcn(gui_State, varargin:);
end
% End initialization code - DO NOT EDIT


% --- Executes just before multi_wavelet is made visible.
function multi_wavelet_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject    handle to figure
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
% varargin   command line arguments to multi_wavelet (see VARARGIN)

% Choose default command line output for multi_wavelet
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes multi_wavelet wait for user response (see UIRESUME)
% uiwait(handles.figure1);


% --- Outputs from this function are returned to the command line.
function varargout = multi_wavelet_OutputFcn(hObject, eventdata, handles) 
% varargout  cell array for returning output args (see VARARGOUT);
% hObject    handle to figure
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout1 = handles.output;


% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject    handle to pushbutton1 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
global I ;
[fname,pname]=uigetfile('*.*');
I=imread(strcat(pname,'\\',fname));
[m,n,k]=size(I);
if k~=1
I=rgb2gray(I);
end
I=double(I);
axes(handles.axes1);
imshow(mat2gray(I));
title('原始图像的灰度图');

% --- Executes on selection change in popupmenu1.
function popupmenu1_Callback(hObject, eventdata, handles)
% hObject    handle to popupmenu1 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

% Hints: contents = get(hObject,'String') returns popupmenu1 contents as cell array
%        contentsget(hObject,'Value') returns selected item from popupmenu1

global I ;
w1=get(handles.popupmenu1,'value')
switch w1   %选择小波基
case 1
   w2= 'bior 3.7';
case 2
    w2='bior 1.1';
case 3    
    w2='bior 1.3';
case 4    
    w2='bior 1.5';
case 5    
   w2='bior 2.2';
case 6   
   w2='bior 2.4';
case 7   
   w2= 'bior 2.6';
case 8   
    w2='bior 2.8';
case 9    
    w2='bior 3.1';
case 10    
    w2='bior 3.3';
case 11    
    w2='bior 3.5';
case 12    
    w2='bior 3.9';
case 13    
    w2='bior 4.4';
case 14    
    w2='bior 5.5';
case 15    
    w2='bior 6.8';
case 16    
    w2='db1';
case 17    
    w2='db4';
case 18    
    w2='db15';
end
disp('压缩前图像的大小');%显示文字
whos('I')           %显示图像属性
% 进行二维小波变换 'bior3.7'
[a,b] = wavedec2(I, 3,w2); % 分三层,wavedec2:2维多层小波分解
% 提取各层低频信息
c1 = appcoef2( a, b,w2, 1 );%提取二维小波分解低频系数
axes(handles.axes18);
imshow(c1, []);
title('第一层低频部分:');
ca1=wcodemat(c1,440,'mat',0);   %对第一层信息进行量化编码
axes(handles.axes2);
imshow(ca1, []);
title('第一次压缩后图像:');
disp('第一次压缩图像的大小');%显示文字
whos('ca1');
c2= appcoef2( a, b,w2, 2 );
axes(handles.axes19);
imshow(c2, []);
title('第二层低频部分:');
ca2=wcodemat(c2,440,'mat',0);   %对第一层信息进行量化编码
axes(handles.axes6);

三、运行结果


四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1] 蔡利梅.MATLAB图像处理——理论、算法与实例分析[M].清华大学出版社,2020.
[2]杨丹,赵海滨,龙哲.MATLAB图像处理实例详解[M].清华大学出版社,2013.
[3]周品.MATLAB图像处理与图形用户界面设计[M].清华大学出版社,2013.
[4]刘成龙.精通MATLAB图像处理[M].清华大学出版社,2015.

开发者涨薪指南 48位大咖的思考法则、工作方式、逻辑体系

以上是关于图像压缩基于matlab GUI小波变换图像压缩含Matlab源码 609期的主要内容,如果未能解决你的问题,请参考以下文章

图像压缩基于小波变换实现图像压缩matlab源码含 GUI

图像压缩基于matlab GUI DCT图像无损压缩含Matlab源码 726期

图像融合基于matlab小波变换全聚焦图像融合含Matlab源码 1372期

图像融合基于matlab小波变换全聚焦图像融合含Matlab源码 1372期

图像压缩基于DCT实现图像压缩matlab源码含GUI

图像处理基于图像直方图+滤波+小波变换+分割处理系统matlab源码含 GUI