LinkedHashMap源码解析

Posted hequnwang10

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了LinkedHashMap源码解析相关的知识,希望对你有一定的参考价值。

LinkedHashMap 直接继承自HashMap

public class LinkedHashMap<K,V>
    extends HashMap<K,V>
    implements Map<K,V>

而LinkedHashMap比HashMap优于以下几点

  • LinkedHashMap 内部维护了一个双向链表,解决了 HashMap 不能随时保持遍历顺序和插入顺序一致的问题
  • LinkedHashMap 元素的访问顺序也提供了相关支持,也就是我们常说的 LRU(最近最少使用)原则。

LinkedHashMap有两个因子影响着其性能:初始容量和负载因子。它们的定义与HashMap完全相同。要注意,为初始容量选择非常高的值对此类的影响比对HashMap要小,因为此类的迭代时间不受容量的影响。

1、类成员

final boolean accessOrder;

如果没有特别指定排序模式,那么accessOrder = false,因此其默认将按照插入顺序来作为迭代顺序。如果设置为true,则使双向链表维护哈希表中元素的访问顺序

2、构造方法

/**
 * 根据指定的初始容量和负载因子,初始化一个空的按照插入顺序排序的 LinkedHashMap 的实例
 */
public LinkedHashMap(int initialCapacity, float loadFactor) 
    super(initialCapacity, loadFactor);
    accessOrder = false;


/**
 * 根据指定的容量和默认的负载因子(0.75),初始化一个空的按照插入顺序排序的 LinkedHashMap 的实例
 */
public LinkedHashMap(int initialCapacity) 
    super(initialCapacity);
    accessOrder = false;


/**
 * 根据默认的容量(16)和负载因子(0.75),初始化一个空的按照插入顺序排序的 LinkedHashMap 实例
 */
public LinkedHashMap() 
    super();
    accessOrder = false;


/**
 * 初始化一个根据传入的映射关系并且按照插入顺序排序的 LinkedHashMap 的实例
 * 这个 LinkedHashMap 实例的负载因子为0.75,容量不小于指定的映射关系的数量的最小2次幂
 */
public LinkedHashMap(Map<? extends K, ? extends V> m) 
    super();
    accessOrder = false;
    putMapEntries(m, false);


/**
 * 根据指定的容量、负载因子、排序模式来初始化一个空的 LinkedHashMap 的实例
 * accessOrder 为 true 时按条目访问顺序作为迭代顺序,为 false 时按照插入顺序作为迭代顺序
 */
public LinkedHashMap(int initialCapacity,
                     float loadFactor,
                     boolean accessOrder) 
    super(initialCapacity, loadFactor);
    this.accessOrder = accessOrder;

3、节点

LinkedHashMap 对于 HashMap.Node 节点进行了拓展:

    static class Entry<K,V> extends HashMap.Node<K,V> 
        Entry<K,V> before, after;
        Entry(int hash, K key, V value, Node<K,V> next) 
            super(hash, key, value, next);
        
    

LinkedHashMap在HashMap的基础上添加了 before 和 after 这两个指针变量。这 before 变量在每次添加元素的时候将会链接上一次添加的元素,而上一次添加的元素的 after 变量将指向该次添加的元素,来形成双向链接。值得注意的是 LinkedHashMap 并没有覆写任何关于 HashMap put 方法。所以调用 LinkedHashMap 的 put 方法实际上调用了父类 HashMap 的方法。

4、三个重要的回调函数

在HashMap源码中,预留了三个回调函数,来让LinkedHashMap进行后期操作:

// Callbacks to allow LinkedHashMap post-actions
void afterNodeAccess(Node<K,V> p)  
void afterNodeInsertion(boolean evict)  
void afterNodeRemoval(Node<K,V> p)  

在LinkedHashMap中,这三个函数实现如下:

//移除节点的时候会触发回调,将节点从双向链表中删除,在调用 removeNode 函数时候会执行
void afterNodeRemoval(Node<K, V> e)  // unlink
    LinkedHashMap.Entry<K, V> p =
        (LinkedHashMap.Entry<K, V>)e, b = p.before, a = p.after;
    p.before = p.after = null;
    if (b == null)
        head = a;
    else
        b.after = a;
    if (a == null)
        tail = b;
    else
        a.before = b;


//新节点插入时会触发回调,根据条件判断是否移除最老的条目,在调用 compute computeIfAbsent merge putVal 函数时候会实行
//实现 LruCache 的时候会用到这个函数
void afterNodeInsertion(boolean evict)  // possibly remove eldest
    LinkedHashMap.Entry<K, V> first;
    if (evict && (first = head) != null && removeEldestEntry(first)) 
        K key = first.key;
        removeNode(hash(key), key, null, false, true);
    


//将节点放置链表尾,在调用 putVal 函数时会执行,保证最近访问节点在链表尾部
void afterNodeAccess(Node<K, V> e)  // move node to last
    LinkedHashMap.Entry<K, V> last;
    //accessOrder为 true表示按照访问顺序排序,并且此时的键值对不在链表尾部
    if (accessOrder && (last = tail) != e) 
        LinkedHashMap.Entry<K, V> p =
            (LinkedHashMap.Entry<K, V>)e, b = p.before, a = p.after;
        p.after = null;
        if (b == null)
            head = a;
        else
            b.after = a;
        if (a != null)
            a.before = b;
        else
            last = b;
        if (last == null)
            head = p;
        else 
            p.before = last;
            last.after = p;
        
        tail = p;
        ++modCount;
    

从上面三个回调函数可以看出,其主要是在对条目进行操作的时候触发来维护双向链表。另外值得一提的是afterNodeInsertionremoveEldestEntry函数,在构建 LruCache 时将非常有用。对于removeEldestEntry,其默认返回false,因此默认情况下不会删除最旧的元素:

/**
 * @param    eldest 哈希表中最近插入的条目,或者如果迭代顺序是按照访问顺序排序,则是最近最少访问的条目。
 *                  如果这个方法返回 true,则这是将被删除的条目。如果在 put 或 putAll 调用之前哈希表为空时,触发此调用,
 *                  则这将是刚插入的条目;换句话说,如果哈希表包含单个条目,则最老的条目也是最新的。
 * @return   返回 true 表明将删除最老的条目
 */
protected boolean removeEldestEntry(Map.Entry<K, V> eldest) 
    return false;

如果需要删除最旧条目,则返回true。在将新条目插入后,put和putAll将调用此方法。它为实现者提供了在每次添加新条目时删除最旧条目的机会。如果用来实现缓存,则此选项非常有用:它允许哈希表通过删除过时条目来减少内存消耗。

5、put插入

LinkedHashMap直接使用了HashMap的put函数,但重写了newNode、afterNodeAccess和afterNodeInsertion方法。

Node<K,V> newNode(int hash, K key, V value, Node<K,V> e) 
    LinkedHashMap.Entry<K,V> p =
        new LinkedHashMap.Entry<K,V>(hash, key, value, e);
    //将节点放置链表尾部
    linkNodeLast(p);
    return p;


// 将新增节点放置链表尾部
private void linkNodeLast(LinkedHashMap.Entry<K,V> p) 
    LinkedHashMap.Entry<K,V> last = tail;
    tail = p;
    if (last == null)
        head = p;
    else 
        p.before = last;
        last.after = p;
    


final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
              boolean evict) 
              
   Node<K,V>[] tab; Node<K,V> p; int n, i;
   
   if ((tab = table) == null || (n = tab.length) == 0)
       n = (tab = resize()).length;
   if ((p = tab[i = (n - 1) & hash]) == null)
       tab[i] = newNode(hash, key, value, null);
   else // 发生 hash 碰撞了
       Node<K,V> e; K k;
       if (p.hash == hash &&
           ((k = p.key) == key || (key != null && key.equals(k))))
           e = p;
       else if (p instanceof TreeNode)....
       else 
          //hash 值计算出的数组索引相同,但 key 并不同的时候 循环整个单链表
           for (int binCount = 0; ; ++binCount) 
               if ((e = p.next) == null) //遍历到尾部
                    // 创建新的节点,拼接到链表尾部
                   p.next = newNode(hash, key, value, null);
                   ....
                   break;
               
               //如果遍历过程中找到链表中有个节点的 key 与 当前要插入元素的 key 相同,
               //此时 e 所指的节点为需要替换 Value 的节点,并结束循环
               if (e.hash == hash &&
                   ((k = e.key) == key || (key != null && key.equals(k))))
                   break;
               //移动指针    
               p = e;
           
       
       //如果循环完后 e!=null 代表需要替换e所指节点 Value
       if (e != null) 
           V oldValue = e.value//保存原来的 Value 作为返回值
           // onlyIfAbsent 一般为 false 所以替换原来的 Value
           if (!onlyIfAbsent || oldValue == null)
               e.value = value;
           afterNodeAccess(e);//该方法在 LinkedHashMap 中的实现稍后说明
           return oldValue;
       
   
   //操作数增加
   ++modCount;
   //如果 size 大于扩容阈值则表示需要扩容
   if (++size > threshold)
       resize();
   afterNodeInsertion(evict);
   return null;

看出每次添加新节点的时候实际上是调用 newNode 方法生成了一个新的节点,放到指定 hash 桶中,但是很明显,HashMap 中 newNode 方法无法完成上述所讲的双向链表节点的间的关系,所以 LinkedHashMap 复写了该方法。
我们创建一个新节点之后,通过linkNodeLast方法,将新的节点与之前双向链表的最后一个节点(tail)建立关系,在这部操作中我们仍不知道这个节点究竟储存在哈希表表的何处,但是无论他被放到什么地方,节点之间的关系都会加入双向链表。

6、删除

LinkedHashMap仍然直接使用了HashMap的remove函数,只是对afterNodeRemoval回调函数进行了重写

 public V remove(Object key) 
   Node<K,V> e;
   return (e = removeNode(hash(key), key, null, false, true)) == null ?
       null : e.value;


// HashMap 中实现
 final Node<K,V> removeNode(int hash, Object key, Object value,
                               boolean matchValue, boolean movable) 
   Node<K,V>[] tab; Node<K,V> p; int n, index;
   //判断哈希表是否为空,长度是否大于0 对应的位置上是否有元素
   if ((tab = table) != null && (n = tab.length) > 0 &&
       (p = tab[index = (n - 1) & hash]) != null) 
       
       // node 用来存放要移除的节点, e 表示下个节点 k ,v 每个节点的键值
       Node<K,V> node = null, e; K k; V v;
       //如果第一个节点就是我们要找的直接赋值给 node
       if (p.hash == hash &&
           ((k = p.key) == key || (key != null && key.equals(k))))
           node = p;
       else if ((e = p.next) != null) 
            // 遍历红黑树找到对应的节点
           if (p instanceof TreeNode)
               node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
           else 
                //遍历对应的链表找到对应的节点
               do 
                   if (e.hash == hash &&
                       ((k = e.key) == key ||
                        (key != null && key.equals(k)))) 
                       node = e;
                       break;
                   
                   p = e;
                while ((e = e.next) != null);
           
       
       // 如果找到了节点
       // !matchValue 是否不删除节点
       // (v = node.value) == value ||
                            (value != null && value.equals(v))) 节点值是否相同,
       if (node != null && (!matchValue || (v = node.value) == value ||
                            (value != null && value.equals(v)))) 
           //删除节点                 
           if (node instanceof TreeNode)
               ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
           else if (node == p)
               tab[index] = node.next;
           else
               p.next = node.next;
           ++modCount;
           --size;
           afterNodeRemoval(node);// 注意这个方法 在 Hash表的删除操作完成调用该方法
           return node;
       
   
   return null;


//  从双向链表中删除对应的节点 e 为已经删除的节点
void afterNodeRemoval(Node<K,V> e)  
    LinkedHashMap.Entry<K,V> p =
        (LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;
    // 将 p 节点的前后指针引用置为 null 便于内存释放
    p.before = p.after = null;
    // p.before 为 null,表明 p 是头节点 
    if (b == null)
        head = a;
    else//否则将 p 的前驱节点连接到 p 的后驱节点
        b.after = a;
    // a 为 null,表明 p 是尾节点
    if (a == null)
        tail = b;
    else //否则将 a 的前驱节点连接到 b 
        a.before = b;



7、get查询

/**
 * 返回指定 key 所对应的 value 值,当不存在指定的 key 时,返回 null。
 *
 * 当返回 null 的时候并不表明哈希表中不存在这种关系的映射,有可能对于指定的 key,其对应的值就是 null。
 * 因此可以通过 containsKey 来区分这两种情况。
 */
public V get(Object key) 
    Node<K,V> e;
    if ((e = getNode(hash(key), key)) == null)
        return null;
    if (accessOrder)
        afterNodeAccess(e);
    return e.value;

与HashMap相比,其多了一步对 accessOrder 的判断来维护链表,当指定迭代顺序按照访问顺序排序时,get操作表明对指定的条目进行了一次访问,那么此条目应该移到链表尾部。对于afterNodeAccess在上面已经分析过了,值得注意的是,在调用afterNodeAccess时,会修改 modeCount,所以当你正在accessOrder = true的模式下迭代LinkedHashMap时,如果同时查询访问数据,会导致 fail-fast,因为迭代的顺序已经变了。

8、containsValue

//LinkedHashMap 中 containsValue 的实现
public boolean containsValue(Object value) 
    // 直接遍历双向链表去寻找对应的节点
   for (LinkedHashMap.Entry<

以上是关于LinkedHashMap源码解析的主要内容,如果未能解决你的问题,请参考以下文章

Java集合类源码解析:LinkedHashMap

java LinkedHashMap源码解析

LinkedHashMap源码解析

LinkedHashMap实现LRU - 附重点源码解析

集合-LinkedHashMap 源码解析

深入LinkedHashMap源码解析(JDK1.8)