Pyspark基础sql获取user最近3次使用的item

Posted 山顶夕景

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Pyspark基础sql获取user最近3次使用的item相关的知识,希望对你有一定的参考价值。

文章目录

一、先用window函数尝试

pyspark.sql和mysql一样有window窗口函数:

# 数据的分组聚合,找到每个用户最近的3次收藏beat(用window开窗函数)
from pyspark.sql.window import Window
import pyspark.sql.functions as F


window_out = Window.partitionBy("user_id") \\
                   .orderBy(F.desc("collect_time")) 
# user_feed.withColumn("rank", F.rank().over(window_out)).show(truncate = False)
# user_feed.withColumn("rank", F.rank().over(window_out)).show(40)
user_feed_test = user_feed.withColumn("rank", F.row_number().over(window_out)) \\
                          .where(F.col('rank') <= 3) 
user_feed_test.show(7)
# .where(F.col('row_number') <= 3).select("user_id","beat_id","collect_type","rank") \\

这样就能得到每个用户最近三次使用的item了(根据时间进行排序,在最后一列),然后把一些beat_id异常值去掉:

# 对异常的beat_id的处理,去掉所有值为0的表项
user_feed_test = user_feed_test.filter(F.col('beat_id') > 0)
user_feed_test.show(7)

"""
+--------+-------+------------+--------------------+----+
| user_id|beat_id|collect_type|        collect_time|rank|
+--------+-------+------------+--------------------+----+
|10065188| 827272|           4|2021-08-22 04:54:...|   1|
|10065188| 885812|           5|2020-10-23 18:53:...|   2|
|10068979|1069390|           5|2021-06-20 07:44:...|   1|
|10074915|1122682|           4|2021-09-07 14:26:...|   2|
|10075397| 947751|           4|2022-01-30 07:30:...|   1|
|10075397| 336641|           5|2022-01-30 07:23:...|   2|
|10075397| 886179|           4|2022-01-05 10:35:...|   3|
+--------+-------+------------+--------------------+----+
"""

二、获得对应的collection_list

# 这里要注意创建视图,否则上面的user_feed_test只是一个变量
user_feed_test.createOrReplaceTempView("user_feed_test")
#  把每个用户前3收藏的装入set中
df = spark.sql("select user_id, \\
               concat_ws(',', collect_set(beat_id)) as collection_list  \\
               FROM user_feed_test \\
               GROUP BY user_id")
df.show(5)

结果为:

+--------+--------------------+
| user_id|     collection_list|
+--------+--------------------+
|10065188|       827272,885812|
|10068979|             1069390|
|10074915|          -2,1122682|
|10075397|336641,886179,947751|
|10454402|888649,884711,108...|
+--------+--------------------+

三、用withColumn和split进行分隔

withColumn增加对应列:

# 用withColumn和split进行分隔
from pyspark.sql.functions import instr, split, when

# instr表示找到在字符串中对应字符第一次出现的下标位置
#df = df.withColumn('separator_if_exists',
#                   (instr(col('collection_list'),',') > 0) & instr(col('collection_list'),',').isNotNull())
df = df.withColumn('separator_if_exists', 
                   (split(col('collection_list'),',')[0] > 0).isNotNull())
df = df.withColumn('collect_beat1',
                   when(col('separator_if_exists') == True,
                        split(col('collection_list'),',')[0]).otherwise(None))
# .drop('separator_if_exists')

df = df.withColumn('collect_beat2',
                   when(col('separator_if_exists') == True,
                        split(col('collection_list'),',')[1]).otherwise(None))
df = df.withColumn('collect_beat3',
                   when(col('separator_if_exists') == True,
                        split(col('collection_list'),',')[2]).otherwise(None))

df.show(truncate=False)

结果为:

+--------+----------------------+-------------------+-------------+-------------+-------------+
|user_id |collection_list       |separator_if_exists|collect_beat1|collect_beat2|collect_beat3|
+--------+----------------------+-------------------+-------------+-------------+-------------+
|10065188|827272,885812         |true               |827272       |885812       |null         |
|10068979|1069390               |true               |1069390      |null         |null         |
|10074915|-2,1122682            |true               |-2           |1122682      |null         |
|10364341|1070218               |true               |1070218      |null         |null         |
+--------+----------------------+-------------------+-------------+-------------+-------------+

Reference

[1] https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.sql.functions.window.html?highlight=window#pyspark.sql.functions.window

以上是关于Pyspark基础sql获取user最近3次使用的item的主要内容,如果未能解决你的问题,请参考以下文章

pyspark基础知识点

PySpark数据分析基础:pyspark.sql.SparkSession类方法详解及操作+代码展示

如何解析sql语句插入以使用pyspark获取值

Pyspark常用数据分析基础操作

pyspark 查询的 SQL 等价物

在 Spark 中获取上周一