直观理解Law of Total Variance(方差分解公式)

Posted Jie Qiao

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了直观理解Law of Total Variance(方差分解公式)相关的知识,希望对你有一定的参考价值。

Law of Iterated Expectations (LIE)

在讲方差分解之前,我们需要先理解双期望定理。对于一个X,我们可以根据不同的Y将其任意的划分为几部分:

于是经过这样的划分,X总体的均值其实是等价于每一个划分下均值的总体均值。

E ⁡ [ X ] = E ⁡ [ E ⁡ [ X ∣ Y ] ] \\operatornameE [X]=\\operatornameE [\\operatornameE [X|Y]] E[X]=E[E[XY]]

举个例子,假设一共划分为三部分,每部分的均值分别为70 60 80, 于是

E [ X ] = E [ E [ X ∣ Y ] ] = E [ E [ X ∣ Y = y 1 ] + E [ X ∣ Y = y 2 ] + E [ X ∣ Y = y 3 ] ] = 70 + 60 + 80 3 = 70 \\beginaligned & E[X]=E[E[X\\mid Y]]\\\\ = & E[E[X\\mid Y=y_1 ]+E[X\\mid Y=y_2 ]+E[X\\mid Y=y_3 ]]\\\\ = & \\frac70+60+803\\\\ = & 70 \\endaligned ===E[X]=E[E[XY]]E[E[XY=y1]+E[XY=y2]+E[XY=y3]]370+60+8070

从理论上,
E [ E [ X ∣ Y ] ] = ∫ p ( y ) ∫ x p ( x ∣ y ) d x d y = ∫ p ( x , y ) x d x d y = ∫ p ( x ) x d x = E [ X ] \\beginaligned E[E[X\\mid Y]] & =\\int p( y)\\int xp( x|y) dxdy\\\\ & =\\int p( x,y) xdxdy\\\\ & =\\int p( x) xdx\\\\ & =E[ X] \\endaligned E[E[XY]]=p(y)xp(xy)dxdy=p(x,y)xdxdy=p(x)xdx=E[X]

Mathematical Derivation of the Law of Total Variance

另一个重要的规则是total variance:
V a r ( X ) = E ⁡ [ V a r ( X ∣ Y )   ] + V a r ( E ⁡ [ X ∣ Y ] ) Var(X)=\\operatornameE [Var(X\\mid Y)\\ ]+Var(\\operatornameE [X\\mid Y]) Var(X)=E[Var(XY) ]+Var(E[XY])

它刻画了方差的两个组成成分:
E ⁡ [ V a r ( X ∣ Y )   ] = E ⁡ [   E ⁡ [ X 2 ∣ Y   ] − ( E ⁡ [ X ∣ Y ] ) 2   ] Def. of variance = E ⁡ [   E ⁡ [ X 2 ∣ Y ]   ] − E ⁡ [   ( E ⁡ [ X ∣ Y ] ) 2   ] Lin. of Expectation = E ⁡ [ X 2 ] − E ⁡ [   ( E ⁡ [ X ∣ Y ] ) 2   ] law of Ite. Expect V a r ( E [ X ∣ Y ] ) = E [ ( E [ X ∣ Y ] ) 2 ] − E [ E [ X ∣ Y ] ] 2 Def. of variance = E [ ( E [ X ∣ Y ] ) 2 ] − E [ X ] 2 law of Ite. Expect ∴   E ⁡ [ V a r ( X ∣ Y )   ] + V a r ( E ⁡ [ X ∣ Y ] ) = E ⁡ [ X 2 ] − E [ X ] 2 = V a r ( X ) \\beginaligned \\operatornameE [Var(X\\mid Y)\\ ] & =\\operatornameE [\\ \\operatornameE [X^2 \\mid Y\\ ]-(\\operatornameE [X\\mid Y])^2 \\ ] & \\textDef. of variance\\\\ & =\\operatornameE [\\ \\operatornameE [X^2 \\mid Y]\\ ]-\\operatornameE [\\ (\\operatornameE [X\\mid Y])^2 \\ ] & \\textLin. of Expectation\\\\ & =\\operatornameE [X^2 ]-\\operatornameE [\\ (\\operatornameE [X\\mid Y])^2 \\ ] & \\textlaw of Ite. Expect \\endaligned\\\\ \\\\ \\beginaligned Var(E[X\\mid Y]) & =E[( E[X\\mid Y])^2 ]-E[E[X\\mid Y]]^2 & \\textDef. of variance\\\\ & =E[( E[X\\mid Y])^2 ]-E[X]^2 & \\textlaw of Ite. Expect \\endaligned\\\\ \\\\ \\therefore \\ \\operatornameE [Var(X\\mid Y)\\ ]+Var(\\operatornameE [X\\mid Y])=\\operatornameE [X^2 ]-E[X]^2 =Var( X) E[Var(XY) ]=E[ E[X2Y ](E[XY])2 ]=E[ E[X2Y] ]E[ (E[XY])2 ]=E[X2]E[ (E[XY])2 ]Def. of varianceLin. of Expectationlaw of Ite. ExpectVar(E[XY])=E[(E[XY])2]E[E[XY]]2=E[(E[XY])2]E[X]2Def. of variancelaw of Ite. Expect E[Var(XY) ]+Var(E[XY])=E[X2]E[X]2=Var(X)

怎么理解呢?

  1. 什么是 E ⁡ [ V a r ( X ∣ Y )   ] \\displaystyle \\operatornameE [Var(X\\mid Y)\\ ] E[Var(XY) ]? 直观来看,他是每个划分下方差的均值,因此,它刻画了样本内差异的均值。
  2. 什么是 V a r ( E [ X ∣ Y ] ) \\displaystyle Var(E[X\\mid Y]) Var(E[XY])? 它刻画了不同分组下均值的差异程度,因此,它刻画了样本间的差异程度。

因此,方差刻画了样本内和样本间差异的叠加,这就是Law of Total Variance.

与k-means聚类的联系

熟悉聚类算法的同学可能意识到,k means聚类其实有两种等价的学习方式,分别是,最小化类内距离(within-cluster sum of squares (WCSS)):
arg min ⁡ S ∑ i = 1 k ∑ x ∈ S i ∥ x − μ i ∥ 2 = arg min ⁡ S ∑ i = 1 k ∣ S i ∣ Var ⁡ S i \\displaystyle \\underset\\mathbfS\\operatornamearg\\ min\\sum ^k_i=1\\sum _\\mathbfx \\in S_i\\Vert \\mathbfx -\\boldsymbol\\mu _i\\Vert ^2 =\\underset\\mathbfS\\operatornamearg\\ min\\sum ^k_i=1 |S_i |\\operatornameVar S_i 以上是关于直观理解Law of Total Variance(方差分解公式)的主要内容,如果未能解决你的问题,请参考以下文章

直观理解Law of Total Variance(方差分解公式)

中心极限定理 | central limit theorem | 大数定律 | law of large numbers

variance 与 variation 的区别

variance 与 variation 的区别

本福特定律(Benford‘s law)的直观解释

Law of Iterated Expectations & Covariance