Linux 内核 内存管理物理内存组织结构 ④ ( 内存区域 zone 简介 | zone 结构体源码分析 | zone 结构体源码 )

Posted 韩曙亮

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Linux 内核 内存管理物理内存组织结构 ④ ( 内存区域 zone 简介 | zone 结构体源码分析 | zone 结构体源码 )相关的知识,希望对你有一定的参考价值。

文章目录


内存管理系统 3 3 3级结构 :

内存节点 Node ,

内存区域 Zone ,

内存页 Page ,

Linux 内核中 , 使用 上述 3 3 3 级结构 描述 和 管理 " 物理内存 " ;





一、内存区域 zone 简介



" 内存节点 " 是内存管理的 最顶层结构 ,

" 内存节点 " 再向下划分 , 就是 " 内存区域 " zone ,


" 内存区域 " 在 Linux 内核中使用 struct zone 结构体类型进行描述 , zone 枚举定义在 Linux 内核源码的 linux-4.12\\include\\linux\\mmzone.h#350 位置 ;


每个 " 内存区域 " , 都使用 1 1 1zone 结构体 描述 ;





二、zone 结构体源码分析




1、watermark 成员


watermark 表示 " 页分配器 " 使用的 水线 ;

	/* zone watermarks, access with *_wmark_pages(zone) macros */
	unsigned long watermark[NR_WMARK];

2、lowmem_reserve 成员


lowmem_reserve 表示 页分配器 使用的 区域 , 这些区域 必须 保留 , 不能借给高区域类型 ;

	/*
	 * We don't know if the memory that we're going to allocate will be
	 * freeable or/and it will be released eventually, so to avoid totally
	 * wasting several GB of ram we must reserve some of the lower zone
	 * memory (otherwise we risk to run OOM on the lower zones despite
	 * there being tons of freeable ram on the higher zones).  This array is
	 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
	 * changes.
	 */
	long lowmem_reserve[MAX_NR_ZONES];

3、zone_pgdat 成员


zone_pgdat 指向 " 内存节点 " 的 pglist_data 实例 ;

	struct pglist_data	*zone_pgdat;

4、pageset 成员


pageset 表示 每个 " 处理页 " 的集合 ;

	struct per_cpu_pageset __percpu *pageset;

5、zone_start_pfn 成员


zone_start_pfn 表示当前 " 内存区域 zone " 的 " 起始物理页 " 编号 ;

	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
	unsigned long		zone_start_pfn;

6、managed_pages、spanned_pages、present_pages成员


managed_pages 表示 " 伙伴分配器 " 管理的 物理页数量 ;

spanned_pages 表示 当前的 " 内存区域 " 跨越的 物理页 个数 , 包含 " 内存空洞 " ;

present_pages 表示 当前的 " 内存区域 " 包含的 物理页 个数 , 不包含 " 内存空洞 " ;

	/*
	 * spanned_pages is the total pages spanned by the zone, including
	 * holes, which is calculated as:
	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
	 *
	 * present_pages is physical pages existing within the zone, which
	 * is calculated as:
	 *	present_pages = spanned_pages - absent_pages(pages in holes);
	 *
	 * managed_pages is present pages managed by the buddy system, which
	 * is calculated as (reserved_pages includes pages allocated by the
	 * bootmem allocator):
	 *	managed_pages = present_pages - reserved_pages;
	 *
	 * So present_pages may be used by memory hotplug or memory power
	 * management logic to figure out unmanaged pages by checking
	 * (present_pages - managed_pages). And managed_pages should be used
	 * by page allocator and vm scanner to calculate all kinds of watermarks
	 * and thresholds.
	 *
	 * Locking rules:
	 *
	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
	 * It is a seqlock because it has to be read outside of zone->lock,
	 * and it is done in the main allocator path.  But, it is written
	 * quite infrequently.
	 *
	 * The span_seq lock is declared along with zone->lock because it is
	 * frequently read in proximity to zone->lock.  It's good to
	 * give them a chance of being in the same cacheline.
	 *
	 * Write access to present_pages at runtime should be protected by
	 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
	 * present_pages should get_online_mems() to get a stable value.
	 *
	 * Read access to managed_pages should be safe because it's unsigned
	 * long. Write access to zone->managed_pages and totalram_pages are
	 * protected by managed_page_count_lock at runtime. Idealy only
	 * adjust_managed_page_count() should be used instead of directly
	 * touching zone->managed_pages and totalram_pages.
	 */
	unsigned long		managed_pages;
	unsigned long		spanned_pages;
	unsigned long		present_pages;

7、name 成员


name 表示 " 内存区域 " 名称 ;

	const char		*name;

8、free_area 成员


free_area 表示 不同长度的 内存空间区域 ;

	/* free areas of different sizes */
	struct free_area	free_area[MAX_ORDER];




三、zone 结构体源码



zone 结构体源码 :

struct zone 
	/* Read-mostly fields */

	/* zone watermarks, access with *_wmark_pages(zone) macros */
	unsigned long watermark[NR_WMARK];

	unsigned long nr_reserved_highatomic;

	/*
	 * We don't know if the memory that we're going to allocate will be
	 * freeable or/and it will be released eventually, so to avoid totally
	 * wasting several GB of ram we must reserve some of the lower zone
	 * memory (otherwise we risk to run OOM on the lower zones despite
	 * there being tons of freeable ram on the higher zones).  This array is
	 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
	 * changes.
	 */
	long lowmem_reserve[MAX_NR_ZONES];

#ifdef CONFIG_NUMA
	int node;
#endif
	struct pglist_data	*zone_pgdat;
	struct per_cpu_pageset __percpu *pageset;

#ifndef CONFIG_SPARSEMEM
	/*
	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
	 * In SPARSEMEM, this map is stored in struct mem_section
	 */
	unsigned long		*pageblock_flags;
#endif /* CONFIG_SPARSEMEM */

	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
	unsigned long		zone_start_pfn;

	/*
	 * spanned_pages is the total pages spanned by the zone, including
	 * holes, which is calculated as:
	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
	 *
	 * present_pages is physical pages existing within the zone, which
	 * is calculated as:
	 *	present_pages = spanned_pages - absent_pages(pages in holes);
	 *
	 * managed_pages is present pages managed by the buddy system, which
	 * is calculated as (reserved_pages includes pages allocated by the
	 * bootmem allocator):
	 *	managed_pages = present_pages - reserved_pages;
	 *
	 * So present_pages may be used by memory hotplug or memory power
	 * management logic to figure out unmanaged pages by checking
	 * (present_pages - managed_pages). And managed_pages should be used
	 * by page allocator and vm scanner to calculate all kinds of watermarks
	 * and thresholds.
	 *
	 * Locking rules:
	 *
	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
	 * It is a seqlock because it has to be read outside of zone->lock,
	 * and it is done in the main allocator path.  But, it is written
	 * quite infrequently.
	 *
	 * The span_seq lock is declared along with zone->lock because it is
	 * frequently read in proximity to zone->lock.  It's good to
	 * give them a chance of being in the same cacheline.
	 *
	 * Write access to present_pages at runtime should be protected by
	 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
	 * present_pages should get_online_mems() to get a stable value.
	 *
	 * Read access to managed_pages should be safe because it's unsigned
	 * long. Write access to zone->managed_pages and totalram_pages are
	 * protected by managed_page_count_lock at runtime. Idealy only
	 * adjust_managed_page_count() should be used instead of directly
	 * touching zone->managed_pages and totalram_pages.
	 */
	unsigned long		managed_pages;
	unsigned long		spanned_pages;
	unsigned long		present_pages;

	const char		*name;

#ifdef CONFIG_MEMORY_ISOLATION
	/*
	 * Number of isolated pageblock. It is used to solve incorrect
	 * freepage counting problem due to racy retrieving migratetype
	 * of pageblock. Protected by zone->lock.
	 */
	unsigned long		nr_isolate_pageblock;
#endif

#ifdef CONFIG_MEMORY_HOTPLUG
	/* see spanned/present_pages for more description */
	seqlock_t		span_seqlock;
#endif

	int initialized;

	/* Write-intensive fields used from the page allocator */
	ZONE_PADDING(_pad1_)

	/* free areas of different sizes */
	struct free_area	free_area[MAX_ORDER];

	/* zone flags, see below */
	unsigned long		flags;

	/* Primarily protects free_area */
	spinlock_t		lock;

	/* Write-intensive fields used by compaction and vmstats. */
	ZONE_PADDING(_pad2_)

	/*
	 * When free pages are below this point, additional steps are taken
	 * when reading the number of free pages to avoid per-cpu counter
	 * drift allowing watermarks to be breached
	 */
	unsigned long percpu_drift_mark;

#if defined CONFIG_COMPACTION || defined CONFIG_CMA
	/* pfn where compaction free scanner should start */
	unsigned long		compact_cached_free_pfn;
	/* pfn where async and sync compaction migration scanner should start */
	unsigned long		compact_cached_migrate_pfn[2];
#endif

#ifdef CONFIG_COMPACTION
	/*
	 * On compaction failure, 1<<compact_defer_shift compactions
	 * are skipped before trying again. The number attempted since
	 * last failure is tracked with compact_considered.
	 */
	unsigned int		compact_considered;
	unsigned int		compact_defer_shift;
	int			compact_order_failed;
#endif

#if defined CONFIG_COMPACTION || defined CONFIG_CMA
	/* Set to true when the PG_migrate_skip bits should be cleared */
	bool			compact_blockskip_flush;
#endif

	bool			contiguous;

	ZONE_PADDING(_pad3_)
	/* Zone statistics */
	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
 ____cacheline_internodealigned_in_smp;

源码路径 : linux-4.12\\include\\linux\\mmzone.h#350

以上是关于Linux 内核 内存管理物理内存组织结构 ④ ( 内存区域 zone 简介 | zone 结构体源码分析 | zone 结构体源码 )的主要内容,如果未能解决你的问题,请参考以下文章

Linux 内核 内存管理物理分配页 ④ ( __alloc_pages_nodemask 函数源码分析 | 快速路径 | 慢速路径 | get_page_from_freelist 源码 )

Linux 内核 内存管理物理内存组织结构 ⑥ ( 物理页 page 简介 | 物理页 page 与 MMU 内存管理单元 | 内存节点 pglist_data 与 物理页 page 联系 )

Linux 内核 内存管理Linux 内核内存布局 ④ ( ARM64 架构体系内存分布 | 内核启动源码 start_kernel | 内存初始化 mm_init | mem_init )

Linux 内核 内存管理Linux 内核内存布局 ④ ( ARM64 架构体系内存分布 | 内核启动源码 start_kernel | 内存初始化 mm_init | mem_init )

Linux 内核 内存管理物理内存组织结构 ② ( 内存模型 | 平坦内存 | 稀疏内存 | 非连续内存 | 内存管理系统三级结构 | 节点 Node | 区域 Zone | 页 Page )

Linux 内核 内存管理物理内存组织结构 ③ ( 内存管理系统三级结构 | 内存节点描述 | 内存节点 pglist_data 结构体 | pglist_data 结构体源码 )